IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v492y2024ics0304380024001030.html
   My bibliography  Save this article

Effects of top predator re-establishment and fishing on a simulated food web: Allometric Trophic Network model for Lake Oulujärvi

Author

Listed:
  • Kokkonen, Eevi
  • Kuisma, Mikael
  • Hyvärinen, Pekka
  • Vainikka, Anssi
  • Vuorio, Kristiina
  • Perälä, Tommi
  • Härkönen, Laura S.
  • Estlander, Satu
  • Kuparinen, Anna

Abstract

Fish communities face changes in environmental conditions and fishing that affects the abundances and structures of the populations. Before 1960s there were abundant stocks of both pikeperch (Stizostedion lucioperca) and whitefish (Coregonus lavaretus) in Lake Oulujärvi, but in 1960s–1970s the stock of pikeperch declined to very low levels while whitefish stock remained abundant. Due to massive re-introductions, pikeperch recovered since 1999 and is again common while whitefish stock has declined. To understand the ecosystem-level changes observed along the recovery of the pikeperch stock, we constructed a food web model capturing the two most recent states of pikeperch abundance in Lake Oulujärvi. We used Allometric Trophic Network (ATN) model to simulate the pelagic food web in the presence and absence of pikeperch and in the presence and absence of fishing. To parametrize ATN model based on body masses and food web interactions, we used data collections of fish cohort analyses, fish individuals, fish stomach contents, zooplankton, and phytoplankton in Lake Oulujärvi. Pikeperch decreased the biomasses of its planktivorous prey. Fishing truncated the age distribution of planktivorous fish. Pikeperch and fishing had synergistic negative effects on vendace (Coregonus albula) and smelt (Osmerus eperlanus) percentages of fish biomass, and antagonistic negative effect on whitefish and brown trout (Salmo trutta) percentages of fish biomass. Mysis relicta, Chaoborus flavicans, Leptodora and other predatory zooplankton, and Cyclopoida zooplankton guilds increased with fishing and pikeperch. Fishing, and pikeperch in the presence of fishing, increased biomass of Crustacean zooplankton guild. There were marked differences between the ATN model simulations and empirically observed time series of fish stock abundances suggesting that the observed changes are partially caused by environmental or fishing-related factors that were not included in the model.

Suggested Citation

  • Kokkonen, Eevi & Kuisma, Mikael & Hyvärinen, Pekka & Vainikka, Anssi & Vuorio, Kristiina & Perälä, Tommi & Härkönen, Laura S. & Estlander, Satu & Kuparinen, Anna, 2024. "Effects of top predator re-establishment and fishing on a simulated food web: Allometric Trophic Network model for Lake Oulujärvi," Ecological Modelling, Elsevier, vol. 492(C).
  • Handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024001030
    DOI: 10.1016/j.ecolmodel.2024.110715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024001030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    2. Daniel E. Schindler & Ray Hilborn & Brandon Chasco & Christopher P. Boatright & Thomas P. Quinn & Lauren A. Rogers & Michael S. Webster, 2010. "Population diversity and the portfolio effect in an exploited species," Nature, Nature, vol. 465(7298), pages 609-612, June.
    3. Kangur, Külli & Park, Young-Seuk & Kangur, Andu & Kangur, Peeter & Lek, Sovan, 2007. "Patterning long-term changes of fish community in large shallow Lake Peipsi," Ecological Modelling, Elsevier, vol. 203(1), pages 34-44.
    4. Christian N. K. Anderson & Chih-hao Hsieh & Stuart A. Sandin & Roger Hewitt & Anne Hollowed & John Beddington & Robert M. May & George Sugihara, 2008. "Why fishing magnifies fluctuations in fish abundance," Nature, Nature, vol. 452(7189), pages 835-839, April.
    5. Abernethy, Gavin M., 2020. "Allometry in an eco-evolutionary network model," Ecological Modelling, Elsevier, vol. 427(C).
    6. Ransom A. Myers & Boris Worm, 2003. "Rapid worldwide depletion of predatory fish communities," Nature, Nature, vol. 423(6937), pages 280-283, May.
    7. Chih-hao Hsieh & Christian S. Reiss & John R. Hunter & John R. Beddington & Robert M. May & George Sugihara, 2006. "Fishing elevates variability in the abundance of exploited species," Nature, Nature, vol. 443(7113), pages 859-862, October.
    8. Sonja B. Otto & Björn C. Rall & Ulrich Brose, 2007. "Allometric degree distributions facilitate food-web stability," Nature, Nature, vol. 450(7173), pages 1226-1229, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    2. Andreas Sundelöf & Valerio Bartolino & Mats Ulmestrand & Massimiliano Cardinale, 2013. "Multi-Annual Fluctuations in Reconstructed Historical Time-Series of a European Lobster (Homarus gammarus) Population Disappear at Increased Exploitation Levels," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-10, April.
    3. Thanassekos, Stéphane & Scheld, Andrew M., 2020. "Simulating the effects of environmental and market variability on fishing industry structure," Ecological Economics, Elsevier, vol. 174(C).
    4. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    5. Sethi, Suresh Andrew & Reimer, Matthew & Knapp, Gunnar, 2014. "Alaskan fishing community revenues and the stabilizing role of fishing portfolios," Marine Policy, Elsevier, vol. 48(C), pages 134-141.
    6. Williams, Meryl J., 2010. "Food from the Water: How the Fish Production Revolution Affects Aquatic Biodiversity and Food Security," 2010: Biodiversity and World Food Security: Nourishing the Planet and Its People, 30 August-1 September 2010 125247, Crawford Fund.
    7. Florian Diekert, 2012. "Growth Overfishing: The Race to Fish Extends to the Dimension of Size," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 549-572, August.
    8. Frisman, E.Y. & Neverova, G.P. & Revutskaya, O.L., 2011. "Complex dynamics of the population with a simple age structure," Ecological Modelling, Elsevier, vol. 222(12), pages 1943-1950.
    9. Engen, Steinar, 2017. "Spatial synchrony and harvesting in fluctuating populations:Relaxing the small noise assumption," Theoretical Population Biology, Elsevier, vol. 116(C), pages 18-26.
    10. John M Halley & Kyle S Van Houtan & Nate Mantua, 2018. "How survival curves affect populations’ vulnerability to climate change," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    11. Wikström, Anders & Ripa, Jörgen & Jonzén, Niclas, 2012. "The role of harvesting in age-structured populations: Disentangling dynamic and age truncation effects," Theoretical Population Biology, Elsevier, vol. 82(4), pages 348-354.
    12. Ricouard, Antoine & Lehuta, Sigrid & Mahévas, Stéphanie, 2023. "Are maximum yields sustainable? Effect of intra-annual time-scales on MSY, stability and resilience," Ecological Modelling, Elsevier, vol. 479(C).
    13. Hugo C. Mendes & Alberto Murta & R. Vilela Mendes, 2015. "Long Range Dependence And The Dynamics Of Exploited Fish Populations," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-14, November.
    14. Worden, Lee & Botsford, Louis W. & Hastings, Alan & Holland, Matthew D., 2010. "Frequency responses of age-structured populations: Pacific salmon as an example," Theoretical Population Biology, Elsevier, vol. 78(4), pages 239-249.
    15. Alistair Hobday & Karen Evans, 2013. "Detecting climate impacts with oceanic fish and fisheries data," Climatic Change, Springer, vol. 119(1), pages 49-62, July.
    16. Speirs, Douglas C. & Greenstreet, Simon P.R. & Heath, Michael R., 2016. "Modelling the effects of fishing on the North Sea fish community size composition," Ecological Modelling, Elsevier, vol. 321(C), pages 35-45.
    17. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    18. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
    19. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Timothée Poisot & Sonia Kéfi & Serge Morand & Michal Stanko & Pablo A Marquet & Michael E Hochberg, 2015. "A Continuum of Specialists and Generalists in Empirical Communities," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:492:y:2024:i:c:s0304380024001030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.