IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v416y2020ics0304380019303886.html
   My bibliography  Save this article

Integrating fire effects on vegetation carbon cycling within an ecohydrologic model

Author

Listed:
  • Bart, Ryan R.
  • Kennedy, Maureen C.
  • Tague, Christina L.
  • McKenzie, Donald

Abstract

Wildfire affects landscape ecohydrologic processes through feedbacks between fire effects, vegetation growth and water availability. Despite the links between these processes, fire is rarely incorporated dynamically into ecohydrologic models, which couple vegetation growth with water and nutrient fluxes. This omission has the potential to produce inaccurate estimates of long-term changes to carbon and water cycling in response to climate change and management. In this study, we describe a fire-effects model that is coupled to a distributed ecohydrologic model, RHESSys, and a fire-spread model, WMFire. The fire-effects model has intermediate structural complexity so as to be commensurate with the ecohydrologic model. The fire-effects model includes processes for litter and coarse woody debris consumption, processes for fire-associated vegetation mortality and consumption, and takes into account canopy structure (i.e. ladder fuels) for propagation of fire effects into a forest canopy. We evaluated the model in four Western U.S. sites representing different vegetation, climate, and fire regimes. The fire-effects model was able to replicate patterns of expected fire effects across different ecosystems and stand ages without being tuned to produce them; an emergent property of the model. Fire effects of shrubland and understory vegetation varied with surface fire intensity, by design, and fire effects in forest canopies were sensitive to parameters associated with the buildup of litter and understory ladder fuels. These findings demonstrate that the fire-effects model provides an effective tool for evaluating the post-fire changes to physical and ecological processes. Future work will project future fire regimes and improve understanding of watershed dynamics under climate change and land management via the simulation of the fire-effects model with fire spread and ecohydrology.

Suggested Citation

  • Bart, Ryan R. & Kennedy, Maureen C. & Tague, Christina L. & McKenzie, Donald, 2020. "Integrating fire effects on vegetation carbon cycling within an ecohydrologic model," Ecological Modelling, Elsevier, vol. 416(C).
  • Handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303886
    DOI: 10.1016/j.ecolmodel.2019.108880
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019303886
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sturtevant, Brian R. & Scheller, Robert M. & Miranda, Brian R. & Shinneman, Douglas & Syphard, Alexandra, 2009. "Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II," Ecological Modelling, Elsevier, vol. 220(23), pages 3380-3393.
    2. Sobol’, I.M. & Tarantola, S. & Gatelli, D. & Kucherenko, S.S. & Mauntz, W., 2007. "Estimating the approximation error when fixing unessential factors in global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 957-960.
    3. Garcia, Elizabeth S. & Tague, Christina L. & Choate, Janet S., 2016. "Uncertainty in carbon allocation strategy and ecophysiological parameterization influences on carbon and streamflow estimates for two western US forested watersheds," Ecological Modelling, Elsevier, vol. 342(C), pages 19-33.
    4. Rebecca M. B. Harris & Tomas A. Remenyi & Grant J. Williamson & Nathaniel L. Bindoff & David M. J. S. Bowman, 2016. "Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(6), pages 910-931, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borgonovo, E., 2010. "Sensitivity analysis with finite changes: An application to modified EOQ models," European Journal of Operational Research, Elsevier, vol. 200(1), pages 127-138, January.
    2. Scheller, Robert & Kretchun, Alec & Hawbaker, Todd J. & Henne, Paul D., 2019. "A landscape model of variable social-ecological fire regimes," Ecological Modelling, Elsevier, vol. 401(C), pages 85-93.
    3. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    4. Sobol' Ilya M. & Shukhman Boris V., 2007. "On Global Sensitivity Indices: Monte Carlo Estimates Affected by Random Errors," Monte Carlo Methods and Applications, De Gruyter, vol. 13(1), pages 89-97, April.
    5. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    6. Conlisk, Erin & Syphard, Alexandra D. & Franklin, Janet & Regan, Helen M., 2015. "Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model," Ecological Modelling, Elsevier, vol. 301(C), pages 27-39.
    7. Deman, G. & Konakli, K. & Sudret, B. & Kerrou, J. & Perrochet, P. & Benabderrahmane, H., 2016. "Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in a multi-layered hydrogeological model," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 156-169.
    8. Viviane M. Gomes & Joao R. B. Paiva & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2019. "Mechanism for Measuring System Complexity Applying Sensitivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    9. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    10. Shruti Sachdeva & Tarunpreet Bhatia & A. K. Verma, 2018. "GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1399-1418, July.
    11. Kucherenko, S. & Song, S., 2017. "Different numerical estimators for main effect global sensitivity indices," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 222-238.
    12. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    13. Matieyendou Lamboni, 2018. "Global sensitivity analysis: a generalized, unbiased and optimal estimator of total-effect variance," Statistical Papers, Springer, vol. 59(1), pages 361-386, March.
    14. Roux, Sébastien & Loisel, Patrice & Buis, Samuel, 2019. "A filter-based approach for global sensitivity analysis of models with functional inputs," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 119-128.
    15. Lamboni, M. & Iooss, B. & Popelin, A.-L. & Gamboa, F., 2013. "Derivative-based global sensitivity measures: General links with Sobol’ indices and numerical tests," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 87(C), pages 45-54.
    16. Sudret, B. & Mai, C.V., 2015. "Computing derivative-based global sensitivity measures using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 241-250.
    17. Gatelli, D. & Kucherenko, S. & Ratto, M. & Tarantola, S., 2009. "Calculating first-order sensitivity measures: A benchmark of some recent methodologies," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1212-1219.
    18. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    19. Kucherenko, Sergei & Feil, Balazs & Shah, Nilay & Mauntz, Wolfgang, 2011. "The identification of model effective dimensions using global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 440-449.
    20. Medeiros-Sousa, Antônio Ralph & Laporta, Gabriel Zorello & Mucci, Luis Filipe & Marrelli, Mauro Toledo, 2022. "Epizootic dynamics of yellow fever in forest fragments: An agent-based model to explore the influence of vector and host parameters," Ecological Modelling, Elsevier, vol. 466(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:416:y:2020:i:c:s0304380019303886. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.