IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v7y2016i6p910-931.html
   My bibliography  Save this article

Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?

Author

Listed:
  • Rebecca M. B. Harris
  • Tomas A. Remenyi
  • Grant J. Williamson
  • Nathaniel L. Bindoff
  • David M. J. S. Bowman

Abstract

Fire is a complex process involving interactions and feedbacks between biological, socioeconomic, and physical drivers across multiple spatial and temporal scales. This complexity limits our ability to incorporate fire into Earth system models and project future fire activity under climate change. Conceptual, empirical, and process models have identified the mechanisms and processes driving fire regimes, and provide a useful basis to consider future fire activity. However, these models generally deal with only one component of fire regimes, fire frequency, and do not incorporate feedbacks between fire, vegetation, and climate. They are thus unable to predict the location, severity or timing of fires, the socioecological impacts of fire regime change, or potential non‐linear responses such as biome shifts into alternative stable states. Dynamic modeling experiments may facilitate more thorough investigations of fire–vegetation–climate feedbacks and interactions, but their success will depend on the development of dynamic global vegetation models (DGVMs) that more accurately represent biological drivers. This requires improvements in the representation of current vegetation, plant responses to fire, ecological dynamics, and land management to capture the mechanisms behind fire frequency, intensity, and timing. DGVMs with fire modules are promising tools to develop a globally consistent analysis of fire activity, but projecting future fire activity will ultimately require a transdisciplinary synthesis of the biological, atmospheric, and socioeconomic drivers of fire. This is an important goal because fire causes substantial economic disruption and contributes to future climate change through its influence on albedo and the capacity of the biosphere to store carbon. WIREs Clim Change 2016, 7:910–931. doi: 10.1002/wcc.428 This article is categorized under: Climate Models and Modeling > Model Components Assessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change Climate, Ecology, and Conservation > Observed Ecological Changes

Suggested Citation

  • Rebecca M. B. Harris & Tomas A. Remenyi & Grant J. Williamson & Nathaniel L. Bindoff & David M. J. S. Bowman, 2016. "Climate–vegetation–fire interactions and feedbacks: trivial detail or major barrier to projecting the future of the Earth system?," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 7(6), pages 910-931, November.
  • Handle: RePEc:wly:wirecc:v:7:y:2016:i:6:p:910-931
    DOI: 10.1002/wcc.428
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.428
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.428?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Yu & Jiafu Mao & Stan D. Wullschleger & Anping Chen & Xiaoying Shi & Yaoping Wang & Forrest M. Hoffman & Yulong Zhang & Eric Pierce, 2022. "Machine learning–based observation-constrained projections reveal elevated global socioeconomic risks from wildfire," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Bart, Ryan R. & Kennedy, Maureen C. & Tague, Christina L. & McKenzie, Donald, 2020. "Integrating fire effects on vegetation carbon cycling within an ecohydrologic model," Ecological Modelling, Elsevier, vol. 416(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:7:y:2016:i:6:p:910-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.