IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v312y2015icp211-221.html
   My bibliography  Save this article

Perception-based foraging for competing resources: Assessing pest population dynamics at the landscape scale from heterogeneous resource distribution

Author

Listed:
  • Bourhis, Yoann
  • Poggi, Sylvain
  • Mammeri, Youcef
  • Cortesero, Anne-Marie
  • Le Ralec, Anne
  • Parisey, Nicolas

Abstract

Resource distribution, through its effects on individual foraging and survival, drives population dynamics across the landscape. In an agricultural context, resource distribution is therefore a key information in assessing whether or not a pest population may invade and persist in a given environment. Addressing this issue by means of numerical exploration requires a population model with a sound dependence on the landscape. In this paper, we demonstrate that this dependence is effectively secured by a multi-scale description of the population. We derived a reaction–diffusion population model accounting for two individual-scale processes determining resource utilisation: (1) resource perception as a determinant of mobility and (2) energy supply management as a determinant of survival. In this model, the distribution of two competing resources (feeding and laying sites) affects the spatial population dynamics of a dipteran pest through a heterogeneous dispersion of the individuals and a metabolic currency. We conducted a global sensitivity analysis to evaluate the impact of both individual-scale processes on the population dynamics. This exploration demonstrated the biological relevance of the model according to field observations and theoretical expectations. Our key finding is that resource perception and energy supply management appear as significant as the demographic component regarding the resulting dynamics of the pest. Building on its acute multi-scale landscape dependence, this model may be particularly useful for investigating the putative relationships between agricultural landscape features and pest outbreaks.

Suggested Citation

  • Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Cortesero, Anne-Marie & Le Ralec, Anne & Parisey, Nicolas, 2015. "Perception-based foraging for competing resources: Assessing pest population dynamics at the landscape scale from heterogeneous resource distribution," Ecological Modelling, Elsevier, vol. 312(C), pages 211-221.
  • Handle: RePEc:eee:ecomod:v:312:y:2015:i:c:p:211-221
    DOI: 10.1016/j.ecolmodel.2015.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papaïx, Julien & Touzeau, Suzanne & Monod, Hervé & Lannou, Christian, 2014. "Can epidemic control be achieved by altering landscape connectivity in agricultural systems?," Ecological Modelling, Elsevier, vol. 284(C), pages 35-47.
    2. Le Ber, F. & Lavigne, C. & Adamczyk, K. & Angevin, F. & Colbach, N. & Mari, J.-F. & Monod, H., 2009. "Neutral modelling of agricultural landscapes by tessellation methods—Application for gene flow simulation," Ecological Modelling, Elsevier, vol. 220(24), pages 3536-3545.
    3. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    4. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    5. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    6. Benhamou, Simon & Riotte-Lambert, Louise, 2012. "Beyond the Utilization Distribution: Identifying home range areas that are intensively exploited or repeatedly visited," Ecological Modelling, Elsevier, vol. 227(C), pages 112-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bellot, Benoit & Poggi, Sylvain & Baudry, Jacques & Bourhis, Yoann & Parisey, Nicolas, 2018. "Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies," Ecological Modelling, Elsevier, vol. 385(C), pages 12-25.
    2. Catarino, Rui & Areal, Francisco & Park, Julian & Parisey, Nicolas, 2019. "Spatially explicit economic effects of non-susceptible pests' invasion on Bt maize," Agricultural Systems, Elsevier, vol. 175(C), pages 22-33.
    3. Poggi, Sylvain & Sergent, Mike & Mammeri, Youcef & Plantegenest, Manuel & Le Cointe, Ronan & Bourhis, Yoann, 2021. "Dynamic role of grasslands as sources of soil-dwelling insect pests: New insights from in silico experiments for pest management strategies," Ecological Modelling, Elsevier, vol. 440(C).
    4. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Le Cointe, Ronan & Cortesero, Anne-Marie & Parisey, Nicolas, 2017. "Foraging as the landscape grip for population dynamics—A mechanistic model applied to crop protection," Ecological Modelling, Elsevier, vol. 354(C), pages 26-36.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    3. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    4. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    5. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    6. Gregory Hill & Steven Kolmes & Michael Humphreys & Rebecca McLain & Eric T. Jones, 2019. "Using decision support tools in multistakeholder environmental planning: restorative justice and subbasin planning in the Columbia River Basin," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(2), pages 170-186, June.
    7. Wernsdörfer, H. & Rossi, V. & Cornu, G. & Oddou-Muratorio, S. & Gourlet-Fleury, S., 2008. "Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model," Ecological Modelling, Elsevier, vol. 218(3), pages 290-306.
    8. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    9. Pal, Saheb & Ghosh, Indrajit, 2023. "Dynamics of a coupled socio-environmental model: An application to global CO2 emissions," Ecological Modelling, Elsevier, vol. 478(C).
    10. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    11. Priyadarshi, Anupam & Chandra, Ram & Kishi, Michio J. & Smith, S.Lan & Yamazaki, Hidekatsu, 2022. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels," Ecological Modelling, Elsevier, vol. 467(C).
    12. Cadero, A. & Aubry, A. & Brun, F. & Dourmad, J.Y. & Salaün, Y. & Garcia-Launay, F., 2018. "Global sensitivity analysis of a pig fattening unit model simulating technico-economic performance and environmental impacts," Agricultural Systems, Elsevier, vol. 165(C), pages 221-229.
    13. Ratnarajah, Lavenia & Melbourne-Thomas, Jessica & Marzloff, Martin P. & Lannuzel, Delphine & Meiners, Klaus M. & Chever, Fanny & Nicol, Stephen & Bowie, Andrew R., 2016. "A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: Sensitivity of primary productivity estimates to parameter uncertainty," Ecological Modelling, Elsevier, vol. 320(C), pages 203-212.
    14. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    15. Rouger, Baptiste & Goldringer, Isabelle & Barbillon, Pierre & Miramon, Anne & Naino Jika, Abdel Kader & Thomas, Mathieu, 2023. "Sensitivity analysis of a crop metapopulation model," Ecological Modelling, Elsevier, vol. 475(C).
    16. Bar Massada, Avi & Carmel, Yohay, 2008. "Incorporating output variance in local sensitivity analysis for stochastic models," Ecological Modelling, Elsevier, vol. 213(3), pages 463-467.
    17. Giménez-Romero, Àlex & Grau, Amalia & Hendriks, Iris E. & Matias, Manuel A., 2021. "Modelling parasite-produced marine diseases: The case of the mass mortality event of Pinna nobilis," Ecological Modelling, Elsevier, vol. 459(C).
    18. Hanqing Ma & Chunfeng Ma & Xin Li & Wenping Yuan & Zhengjia Liu & Gaofeng Zhu, 2020. "Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    19. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Wu, Wenbin & Shibasaki, Ryosuke & Yang, Peng & Tan, Guoxin & Matsumura, Kan-ichiro & Sugimoto, Kenji, 2007. "Global-scale modelling of future changes in sown areas of major crops," Ecological Modelling, Elsevier, vol. 208(2), pages 378-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:312:y:2015:i:c:p:211-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.