IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v363y2017icp8-16.html
   My bibliography  Save this article

A neutral model for the simulation of linear networks in territories

Author

Listed:
  • Vinatier, F.
  • Chauvet, M.

Abstract

A landscape matrix is the support of biotic and abiotic flows, and in that sense, requires increased interest from ecological modellers. This matrix is partly composed of linear elements, such as roads and field borders, that delimit land uses and are the result of socio-economic drivers. The geometrical properties of these elements could affect flows of water bodies, fauna, and flora. A large amount of research on landscape matrix simulation has been conducted using neutral models, but the efforts have been limited to 1km2 and have been principally devoted to field borders. However, simulating largest territories in neutral models requires consideration of supplementary elements, such as road networks. Furthermore, the sinuosities of the linear elements in territories have rarely been considered per se. We proposed a hierarchical model based on successive imbrication of deformed networks, with the deformation being realized on the basis of a reverse Douglas–Peucker algorithm. We first isolated the hierarchical levels of the landscape and analyzed their relative deformations. Then we constructed the hierarchical model and we tested it on a real territory in the Mediterranean zone. Its structural realism was tested against other common neutral models using the pattern-oriented modelling approach. The hierarchical model was the only neutral model able to represent simultaneously the variabilities of three patterns having implications in ecological processes: polyline lengths, sinuosities and polygon areas. Possible improvements of the model to address non-stationary processes and its potential for implementing geoprospective scenarios are discussed.

Suggested Citation

  • Vinatier, F. & Chauvet, M., 2017. "A neutral model for the simulation of linear networks in territories," Ecological Modelling, Elsevier, vol. 363(C), pages 8-16.
  • Handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:8-16
    DOI: 10.1016/j.ecolmodel.2017.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017303800
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mertens, B. & Poccard-Chapuis, R. & Piketty, M. -G. & Lacques, A. -E. & Venturieri, A., 2002. "Crossing spatial analyses and livestock economics to understand deforestation processes in the Brazilian Amazon: the case of Sao Felix do Xingu in South Para," Agricultural Economics, Blackwell, vol. 27(3), pages 269-294, November.
    2. Le Ber, F. & Lavigne, C. & Adamczyk, K. & Angevin, F. & Colbach, N. & Mari, J.-F. & Monod, H., 2009. "Neutral modelling of agricultural landscapes by tessellation methods—Application for gene flow simulation," Ecological Modelling, Elsevier, vol. 220(24), pages 3536-3545.
    3. E Penelope Holland & James N Aegerter & Calvin Dytham & Graham C Smith, 2007. "Landscape as a Model: The Importance of Geometry," PLOS Computational Biology, Public Library of Science, vol. 3(10), pages 1-14, October.
    4. Gaucherel, C., 2008. "Neutral models for polygonal landscapes with linear networks," Ecological Modelling, Elsevier, vol. 219(1), pages 39-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    2. Bellot, Benoit & Poggi, Sylvain & Baudry, Jacques & Bourhis, Yoann & Parisey, Nicolas, 2018. "Inferring ecological processes from population signatures: A simulation-based heuristic for the selection of sampling strategies," Ecological Modelling, Elsevier, vol. 385(C), pages 12-25.
    3. Araujo, Claudio & Bonjean, Catherine Araujo & Combes, Jean-Louis & Combes Motel, Pascale & Reis, Eustaquio J., 2009. "Property rights and deforestation in the Brazilian Amazon," Ecological Economics, Elsevier, vol. 68(8-9), pages 2461-2468, June.
    4. Blackman, Allen, 2013. "Evaluating forest conservation policies in developing countries using remote sensing data: An introduction and practical guide," Forest Policy and Economics, Elsevier, vol. 34(C), pages 1-16.
    5. Baylis, Kathy & Paulson, Nicholas D. & Piras, Gianfranco, 2011. "Spatial Approaches to Panel Data in Agricultural Economics: A Climate Change Application," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 43(3), pages 325-338, August.
    6. Sonia SCHWARTZ & Jean Galbert ONGONO OLINGA & Eric Nazindigouba KERE & Pascale COMBES MOTEL & Jean-Louis COMBES & Johanna CHOUMERT & Ariane Manuela AMIN, 2014. "A spatial econometric approach to spillover effects between protected areas and deforestation in the Brazilian Amazon," Working Papers 201406, CERDI.
    7. Ortigoza, Gerardo M., 2015. "Unstructured triangular cellular automata for modeling geographic spread," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 520-536.
    8. Duchelle, Amy E. & Almeyda Zambrano, Angélica M. & Wunder, Sven & Börner, Jan & Kainer, Karen A., 2014. "Smallholder Specialization Strategies along the Forest Transition Curve in Southwestern Amazonia," World Development, Elsevier, vol. 64(S1), pages 149-158.
    9. Bernardo F. T. Rudorff & Marcos Adami & Joel Risso & Daniel Alves De Aguiar & Bernardo Pires & Daniel Amaral & Leandro Fabiani & Izabel Cecarelli, 2012. "Remote Sensing Images to Detect Soy Plantations in the Amazon Biome—The Soy Moratorium Initiative," Sustainability, MDPI, vol. 4(5), pages 1-15, May.
    10. Garth Holloway & Donald Lacombe & James P. LeSage, 2007. "Spatial Econometric Issues for Bio‐Economic and Land‐Use Modelling," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(3), pages 549-588, September.
    11. Gallego, Aurea & Calafat, Consuelo & Segura, Marina & Quintanilla, Israel, 2019. "Land planning and risk assessment for livestock production based on an outranking approach and GIS," Land Use Policy, Elsevier, vol. 83(C), pages 606-621.
    12. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Le Cointe, Ronan & Cortesero, Anne-Marie & Parisey, Nicolas, 2017. "Foraging as the landscape grip for population dynamics—A mechanistic model applied to crop protection," Ecological Modelling, Elsevier, vol. 354(C), pages 26-36.
    13. Amin, A. & Choumert-Nkolo, J. & Combes, J.-L. & Combes Motel, P. & Kéré, E.N. & Ongono-Olinga, J.-G. & Schwartz, S., 2019. "Neighborhood effects in the Brazilian Amazônia: Protected areas and deforestation," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 272-288.
    14. Weslem Faria & Alexandre Almeida, 2011. "Agricultural Expansion, Openness to Trade and Deforestation at the Brazilian Amazon: A Spatial Econometric Analysis," ERSA conference papers ersa11p1013, European Regional Science Association.
    15. Kiziridis, Diogenis A. & Mastrogianni, Anna & Pleniou, Magdalini & Tsiftsis, Spyros & Xystrakis, Fotios & Tsiripidis, Ioannis, 2023. "Improving the predictive performance of CLUE-S by extending demand to land transitions: The trans-CLUE-S model," Ecological Modelling, Elsevier, vol. 478(C).
    16. Brandão, Frederico & Befani, Barbara & Soares-Filho, Jaílson & Rajão, Raoni & Garcia, Edenise, 2023. "How to halt deforestation in the Amazon? A Bayesian process-tracing approach," Land Use Policy, Elsevier, vol. 133(C).
    17. Slone, D.H., 2011. "Increasing accuracy of dispersal kernels in grid-based population models," Ecological Modelling, Elsevier, vol. 222(3), pages 573-579.
    18. Brito, Brenda, 2020. "The pioneer market for forest law compliance in Paragominas, Eastern Brazilian Amazon," Land Use Policy, Elsevier, vol. 94(C).
    19. Katrina Mullan & Erin Sills & Subhrendu K. Pattanayak & Jill Caviglia-Harris, 2018. "Converting Forests to Farms: The Economic Benefits of Clearing Forests in Agricultural Settlements in the Amazon," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 427-455, October.
    20. Bowman, Maria S., 2016. "Impact of foot-and-mouth disease status on deforestation in Brazilian Amazon and cerrado municipalities between 2000 and 2010," Journal of Environmental Economics and Management, Elsevier, vol. 75(C), pages 25-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:363:y:2017:i:c:p:8-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.