IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v367y2018icp13-23.html
   My bibliography  Save this article

Assessing the performance of common landscape connectivity metrics using a virtual ecologist approach

Author

Listed:
  • Simpkins, Craig E.
  • Dennis, Todd E.
  • Etherington, Thomas R.
  • Perry, George L.W.

Abstract

Due to increasing habitat fragmentation and concern about its ecological effects, there has been an upsurge in the use of landscape connectivity estimates in conservation planning. Measuring connectivity is challenging, resulting in a limited understanding of the efficacy of connectivity estimation techniques and the conditions under which they perform best. We evaluated the performance of four commonly used connectivity metrics – Euclidean distance; least-cost paths (LCP) length and cost; and circuit theory’s resistance distance – over a variety of simulated landscapes. We developed an agent-based model simulating the dispersal of individuals with different behavioural traits across landscapes varying in their spatial structure. The outcomes of multiple dispersal attempts were used to obtain ‘true’ connectivity. These ‘true’ connectivity measures were then compared to estimates generated using the connectivity metrics, employing the simulated landscapes as cost-surfaces. The four metrics differed in the strength of their correlation with true connectivity; resistance distance showed the strongest correlation, closely followed by LCP cost, with Euclidean distance having the weakest. Landscape structure and species behavioural attributes only weakly predicted the performance of resistance distance, LCP cost and length estimates, with none predicting Euclidean distance’s efficacy. Our results indicate that resistance distance and LCP cost produce the most accurate connectivity estimates, although their absolute performance under different conditions is difficult to predict. We emphasise the importance of testing connectivity estimates against patterns derived from independent data, such as those acquired from tracking studies. Our findings should help to inform a more refined implementation of connectivity metrics in conservation management.

Suggested Citation

  • Simpkins, Craig E. & Dennis, Todd E. & Etherington, Thomas R. & Perry, George L.W., 2018. "Assessing the performance of common landscape connectivity metrics using a virtual ecologist approach," Ecological Modelling, Elsevier, vol. 367(C), pages 13-23.
  • Handle: RePEc:eee:ecomod:v:367:y:2018:i:c:p:13-23
    DOI: 10.1016/j.ecolmodel.2017.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001730443X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vuilleumier, Séverine & Fontanillas, Pierre, 2007. "Landscape structure affects dispersal in the greater white-toothed shrew: Inference between genetic and simulated ecological distances," Ecological Modelling, Elsevier, vol. 201(3), pages 369-376.
    2. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zou & Xiaoxiang Tang & Qian Tan & Huicheng Feng & Huanyu Guo & Junxiang Mei, 2024. "Constructing Ecological Networks for Mountainous Urban Areas Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Yongtai County," Sustainability, MDPI, vol. 16(13), pages 1-18, June.
    2. Jõks, Madli & Helm, Aveliina & Kasari-Toussaint, Liis & Kook, Ene & Lutter, Reimo & Noreika, Norbertas & Oja, Ede & Öpik, Maarja & Randlane, Tiina & Reier, Ülle & Riibak, Kersti & Saag, Andres & Tullu, 2023. "A simulation model of functional habitat connectivity demonstrates the importance of species establishment in older forests," Ecological Modelling, Elsevier, vol. 481(C).
    3. Song, Lili & Wu, Yingying & Wu, Moyu & Ma, Jie & Cao, Wei, 2023. "An integrated approach to model connectivity and identify modules for habitat networks," Ecological Modelling, Elsevier, vol. 483(C).
    4. Trapp, Stephanie E. & Day, Casey C. & Flaherty, Elizabeth A. & Zollner, Patrick A. & Smith, Winston P., 2019. "Modeling impacts of landscape connectivity on dispersal movements of northern flying squirrels (Glaucomys sabrinus griseifrons)," Ecological Modelling, Elsevier, vol. 394(C), pages 44-52.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    4. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    5. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    6. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    7. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    8. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    9. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    10. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    11. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    12. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    13. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    14. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    15. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    16. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    17. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    18. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    19. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    20. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:367:y:2018:i:c:p:13-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.