IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v360y2017icp63-69.html
   My bibliography  Save this article

A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a population of Fowler’s toads (Anaxyrus fowleri)

Author

Listed:
  • Marchand, Philippe
  • Boenke, Morgan
  • Green, David M.

Abstract

Although amphibians typically exhibit high site fidelity and low dispersal, they do undertake rare, long-distance movements. The factors influencing these events remain poorly understood, partly because amphibian spring movements tend to radiate from breeding sites and the animals are often difficult to locate at other times of the year. In this study, we investigate whether these movement patterns can be reproduced by a parsimonious model where foraging steps follow a heavy-tailed, Lévy alpha-stable distribution and individuals may either return to a previous refuge site or establish a new one. We consider three versions of the return behaviour: (1) a distance-independent probability of return to any previous refuge; (2) constant probability of return to the nearest refuge; or (3) a distance-dependent probability of return to each refuge. Using approximate Bayesian computation, we fit each version of the model to radiotracking data from a population of Fowler’s Toads, which inhabits a linear sand dune habitat on the north shore of Lake Erie in Ontario, Canada. Only the model with distance-independent, random returns provides a good fit of the inter-refuge distance distribution and the number of refuges visited per toad. Our results suggest that while toads occasionally forage over long distances, the establishment of new refuges is not driven by the minimization of energy expenditure.

Suggested Citation

  • Marchand, Philippe & Boenke, Morgan & Green, David M., 2017. "A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a population of Fowler’s toads (Anaxyrus fowleri)," Ecological Modelling, Elsevier, vol. 360(C), pages 63-69.
  • Handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:63-69
    DOI: 10.1016/j.ecolmodel.2017.06.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001630850X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.06.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. M. Viswanathan & Sergey V. Buldyrev & Shlomo Havlin & M. G. E. da Luz & E. P. Raposo & H. Eugene Stanley, 1999. "Optimizing the success of random searches," Nature, Nature, vol. 401(6756), pages 911-914, October.
    2. Marchand, Philippe & Harmon-Threatt, Alexandra N. & Chapela, Ignacio, 2015. "Testing models of bee foraging behavior through the analysis of pollen loads and floral density data," Ecological Modelling, Elsevier, vol. 313(C), pages 41-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Priddle, Jacob W. & Drovandi, Christopher, 2023. "Transformations in semi-parametric Bayesian synthetic likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    2. Priscila C A da Silva & Tiago V Rosembach & Anésia A Santos & Márcio S Rocha & Marcelo L Martins, 2014. "Normal and Tumoral Melanocytes Exhibit q-Gaussian Random Search Patterns," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-13, September.
    3. Ma, Brian O. & Davis, Brad H. & Gillespie, David R. & VanLaerhoven, Sherah L., 2009. "Incorporating behaviour into simple models of dispersal using the biological control agent Dicyphus hesperus," Ecological Modelling, Elsevier, vol. 220(23), pages 3271-3279.
    4. Marina E Wosniack & Marcos C Santos & Ernesto P Raposo & Gandhi M Viswanathan & Marcos G E da Luz, 2017. "The evolutionary origins of Lévy walk foraging," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    5. Yang Qi & Pulin Gong, 2022. "Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Cody T Ross & Bruce Winterhalder, 2018. "Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-13, December.
    7. Pascual López-López & José Benavent-Corai & Clara García-Ripollés & Vicente Urios, 2013. "Scavengers on the Move: Behavioural Changes in Foraging Search Patterns during the Annual Cycle," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-9, January.
    8. José Ignacio Santos & María Pereda & Débora Zurro & Myrian Álvarez & Jorge Caro & José Manuel Galán & Ivan Briz i Godino, 2015. "Effect of Resource Spatial Correlation and Hunter-Fisher-Gatherer Mobility on Social Cooperation in Tierra del Fuego," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-29, April.
    9. Pauline Formaglio & Marina E. Wosniack & Raphael M. Tromer & Jaderson G. Polli & Yuri B. Matos & Hang Zhong & Ernesto P. Raposo & Marcos G. E. Luz & Rogerio Amino, 2023. "Plasmodium sporozoite search strategy to locate hotspots of blood vessel invasion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    11. Sophie Lardy & Daniel Fortin & Olivier Pays, 2016. "Increased Exploration Capacity Promotes Group Fission in Gregarious Foraging Herbivores," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    12. LaScala-Gruenewald, Diana E. & Mehta, Rohan S. & Liu, Yu & Denny, Mark W., 2019. "Sensory perception plays a larger role in foraging efficiency than heavy-tailed movement strategies," Ecological Modelling, Elsevier, vol. 404(C), pages 69-82.
    13. Toman, Kellan & Voulgarakis, Nikolaos K., 2022. "Stochastic pursuit-evasion curves for foraging dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    14. Cédric Sueur & Léa Briard & Odile Petit, 2011. "Individual Analyses of Lévy Walk in Semi-Free Ranging Tonkean Macaques (Macaca tonkeana)," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    15. Qi, Jie & Rong, Zhihai, 2013. "The emergence of scaling laws search dynamics in a particle swarm optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1522-1531.
    16. Zhang, Jingjing & Dennis, Todd E. & Landers, Todd J. & Bell, Elizabeth & Perry, George L.W., 2017. "Linking individual-based and statistical inferential models in movement ecology: A case study with black petrels (Procellaria parkinsoni)," Ecological Modelling, Elsevier, vol. 360(C), pages 425-436.
    17. Peter J M Van Haastert & Leonard Bosgraaf, 2009. "Food Searching Strategy of Amoeboid Cells by Starvation Induced Run Length Extension," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-7, August.
    18. Stefano Focardi & Paolo Montanaro & Elena Pecchioli, 2009. "Adaptive Lévy Walks in Foraging Fallow Deer," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-6, August.
    19. Maria C. Mariani & William Kubin & Peter K. Asante & Osei K. Tweneboah & Maria P. Beccar-Varela & Sebastian Jaroszewicz & Hector Gonzalez-Huizar, 2020. "Self-Similar Models: Relationship between the Diffusion Entropy Analysis, Detrended Fluctuation Analysis and Lévy Models," Mathematics, MDPI, vol. 8(7), pages 1-20, June.
    20. Danish A. Ahmed & Sergei V. Petrovskii & Paulo F. C. Tilles, 2018. "The “Lévy or Diffusion” Controversy: How Important Is the Movement Pattern in the Context of Trapping?," Mathematics, MDPI, vol. 6(5), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:360:y:2017:i:c:p:63-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.