IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v342y2016icp82-96.html
   My bibliography  Save this article

Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in south Texas, USA

Author

Listed:
  • Wang, Hsiao-Hsuan
  • Teel, Pete D.
  • Grant, William E.
  • Schuster, Greta
  • Pérez de León, A.A.

Abstract

White-tailed deer (Odocoileus virginianus) are a host for cattle fever ticks (Rhipicephalus (Boophilus) sp.), which are vectors of the pathogens causing bovine babesiosis and anaplasmosis in cattle. Tick eradication efforts focused on cattle along the U.S.-Mexico border are high priority and the potential role of white-tailed deer in compromising these efforts is of great concern. We developed a spatially-explicit, individual-based model to investigate the interactions of white-tailed deer, climate variation, and habitat heterogeneity on the efficacy of three standard tick eradication protocols: the application of acaricides to cattle every two weeks for (1) nine or (2) 12 consecutive months, or (3) the removal of cattle (“pasture vacation”) for 12 consecutive months. We simulated the application of each of these eradication methods during each of three different annual temporal weather profiles for temperature, saturation deficit, and precipitation. Each of the methods suppressed the number of host-seeking larvae in the system to near zero. However, some host-seeking larvae remained, and white-tailed deer remained infested throughout the treatment period. Within 30–60days after the termination of each treatment, tick infestations began to increase, and within 2 years after the initiation of each treatment, populations of host-seeking larvae had increased to pretreatment levels. Differences in treatment efficacy and tick population recovery rates were influenced by (1) the level of pre-treatment infestation, (2) weather conditions during the treatment year, and (3) weather conditions during the post-treatment recovery period. Treatment efficacy and tick population recovery also were influenced by the habitat heterogeneity since cattle and white-tailed deer have different habitat preferences. During treatment periods, white-tailed deer participated in creating tick refugia by dispersing engorged female ticks into, and collecting host-seeking larvae from, habitats favorable for the survival and development of off-host life stages. These refugia facilitated the recrudescence of infestations following the termination of treatment periods. Future applications to assess tick-host-landscape interactions and to consider alternative tick suppression tactics in integrated tick eradication systems are discussed.

Suggested Citation

  • Wang, Hsiao-Hsuan & Teel, Pete D. & Grant, William E. & Schuster, Greta & Pérez de León, A.A., 2016. "Simulated interactions of white-tailed deer (Odocoileus virginianus), climate variation and habitat heterogeneity on southern cattle tick (Rhipicephalus (Boophilus) microplus) eradication methods in s," Ecological Modelling, Elsevier, vol. 342(C), pages 82-96.
  • Handle: RePEc:eee:ecomod:v:342:y:2016:i:c:p:82-96
    DOI: 10.1016/j.ecolmodel.2016.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016305178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D., 2012. "Simulation of climate–host–parasite–landscape interactions: A spatially explicit model for ticks (Acari: Ixodidae)," Ecological Modelling, Elsevier, vol. 243(C), pages 42-62.
    2. Wang, Hsiao-Hsuan & Grant, W.E. & Teel, P.D. & Hamer, S.A., 2016. "Tick-borne infectious agents in nature: Simulated effects of changes in host density on spatial-temporal prevalence of infected ticks," Ecological Modelling, Elsevier, vol. 323(C), pages 77-86.
    3. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifan Li & Juanle Wang & Mengxu Gao & Liqun Fang & Changhua Liu & Xin Lyu & Yongqing Bai & Qiang Zhao & Hairong Li & Hongjie Yu & Wuchun Cao & Liqiang Feng & Yanjun Wang & Bin Zhang, 2017. "Geographical Environment Factors and Risk Assessment of Tick-Borne Encephalitis in Hulunbuir, Northeastern China," IJERPH, MDPI, vol. 14(6), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halsey, Samniqueka J. & Miller, James R., 2018. "A spatial agent-based model of the disease vector Ixodes scapularis to explore host-tick associations," Ecological Modelling, Elsevier, vol. 387(C), pages 96-106.
    2. Rajabi, Mohammadreza & Mansourian, Ali & Pilesjö, Petter & Shirzadi, Mohammad Reza & Fadaei, Reza & Ramazanpour, Javad, 2018. "A spatially explicit agent-based simulation model of a reservoir host of cutaneous leishmaniasis, Rhombomys opimus," Ecological Modelling, Elsevier, vol. 370(C), pages 33-49.
    3. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    4. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    5. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    6. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    7. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    8. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    9. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    10. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    11. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    12. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    13. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    14. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    15. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    16. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    17. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    18. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    19. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    20. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:342:y:2016:i:c:p:82-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.