IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v338y2016icp60-68.html
   My bibliography  Save this article

Elephant poaching risk assessed using spatial and non-spatial Bayesian models

Author

Listed:
  • Rashidi, Parinaz
  • Wang, Tiejun
  • Skidmore, Andrew
  • Mehdipoor, Hamed
  • Darvishzadeh, Roshanak
  • Ngene, Shadrack
  • Vrieling, Anton
  • Toxopeus, Albertus G.

Abstract

Bayesian statistical methods are being used increasingly in crime research because they overcome data quality problems that arise due to the covert nature of crime, but the use of such methods is still in its infancy in the field of wildlife poaching—a specific form of crime. We analyzed poaching risk for African elephant (Loxodonta africana) by comparing spatial and non-spatial Bayesian models. Reports on elephant poaching in the Tsavo ecosystem were obtained for 2002–2012 from the Kenya Wildlife Service. The ecosystem was divided into 34 spatial units for which poaching data were aggregated and served as the base units for analysis. Spatial and non-spatial Bayesian models were fed with expert knowledge obtained through survey responses from 30 experts. The predictive accuracy of both models was assessed using the Deviance Information Criterion (DIC). Our results indicated that spatial Bayesian modeling improved the model fit for mapping elephant poaching risk compared to using non-spatial Bayesian models (DIC value of 193.05 vs 199.03). The results further showed that the seasonal timing of elephant poaching (i.e., in dry and wet seasons), density of waterholes, livestock density and elephant population density were factors significantly influencing the spatial patterns of elephant poaching risk in the Tsavo ecosystem for both models. Although there were similarities in the high risk areas for elephant poaching recognized in both models, risk probability values per spatial unit could differ. Furthermore, spatial Bayesian modeling also identified areas of high poaching risk that were not predicted by the non-spatial model. These findings provide vital information for identifying priority areas for combating elephant poaching and for informing conservation management decisions. The model we present here can be applied to poaching data for other threatened species.

Suggested Citation

  • Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Mehdipoor, Hamed & Darvishzadeh, Roshanak & Ngene, Shadrack & Vrieling, Anton & Toxopeus, Albertus G., 2016. "Elephant poaching risk assessed using spatial and non-spatial Bayesian models," Ecological Modelling, Elsevier, vol. 338(C), pages 60-68.
  • Handle: RePEc:eee:ecomod:v:338:y:2016:i:c:p:60-68
    DOI: 10.1016/j.ecolmodel.2016.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert W Burn & Fiona M Underwood & Julian Blanc, 2011. "Global Trends and Factors Associated with the Illegal Killing of Elephants: A Hierarchical Bayesian Analysis of Carcass Encounter Data," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-10, September.
    2. Peter Congdon, 2000. "Monitoring Suicide Mortality: A Bayesian Approach," European Journal of Population, Springer;European Association for Population Studies, vol. 16(3), pages 251-284, September.
    3. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    4. Porter, Michael D. & Brown, Donald E., 2007. "Detecting local regions of change in high-dimensional criminal or terrorist point processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2753-2768, February.
    5. Hirotugu Akaike, 1977. "An objective use of Bayesian models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 29(1), pages 9-20, December.
    6. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    7. Robert Haining & Jane Law, 2007. "Combining police perceptions with police records of serious crime areas: a modelling approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1019-1034, October.
    8. Jane Law & Matthew Quick, 2013. "Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach," Journal of Geographical Systems, Springer, vol. 15(1), pages 89-113, January.
    9. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Vrieling, Anton & Darvishzadeh, Roshanak & Toxopeus, Bert & Ngene, Shadrack & Omondi, Patrick, 2015. "Spatial and spatiotemporal clustering methods for detecting elephant poaching hotspots," Ecological Modelling, Elsevier, vol. 297(C), pages 180-186.
    10. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miriam Marco & Antonio López-Quílez & David Conesa & Enrique Gracia & Marisol Lila, 2017. "Spatio-Temporal Analysis of Suicide-Related Emergency Calls," IJERPH, MDPI, vol. 14(7), pages 1-13, July.
    2. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    3. Jane Law & Matthew Quick, 2013. "Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach," Journal of Geographical Systems, Springer, vol. 15(1), pages 89-113, January.
    4. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    5. Ranjita Pandey & Himanshu Tolani, 2022. "Crime patterns in Delhi: a Bayesian spatio-temporal assessment," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2971-2980, December.
    6. Quick, Matthew & Li, Guangquan & Brunton-Smith, Ian, 2018. "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 22-32.
    7. Daqian Liu & Wei Song & Chunliang Xiu & Jun Xu, 2021. "Understanding the Spatiotemporal Pattern of Crimes in Changchun, China: A Bayesian Modeling Approach," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    8. Matthew Quick, 2019. "Multiscale spatiotemporal patterns of crime: a Bayesian cross-classified multilevel modelling approach," Journal of Geographical Systems, Springer, vol. 21(3), pages 339-365, September.
    9. Jane Law & Matthew Quick & Ping Chan, 2016. "Open area and road density as land use indicators of young offender residential locations at the small-area level: A case study in Ontario, Canada," Urban Studies, Urban Studies Journal Limited, vol. 53(8), pages 1710-1726, June.
    10. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    11. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    12. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    13. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    14. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    15. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    16. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    17. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    18. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    19. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    20. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:338:y:2016:i:c:p:60-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.