IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v327y2016icp105-114.html
   My bibliography  Save this article

Windthrow modelling in old-growth and multi-layered boreal forests

Author

Listed:
  • Anyomi, K.A.
  • Mitchell, S.J.
  • Ruel, J.-C.

Abstract

Windthrow is a recurring disturbance process in regions that are influenced by maritime climates, including boreal forests. Within the circumboreal region, forest management approaches have been adapted to emulate natural disturbance in order to promote biodiversity and ecosystem resilience. Few studies have evaluated windthrow outcomes in natural or managed old-growth boreal mixed-species stands, and these studies are primarily empirical. The objective of this study was to adapt the hybrid empirical-mechanistic ForestGALES_BC model, to investigate windthrow dynamics in natural and managed boreal old-growth stands, under various wind regimes. ForestGALES_BC was updated by adding biomechanical data for balsam fir (Abies balsamea (L.) Mill.) and black spruce (Picea mariana (Mill.) B.S.P.). The model has the ability to simulate damage propagation during wind events by recalculating wind loading on a subject tree after failure of upwind trees. The number of iterations of this recalculation provides insights into the potential for propagation during longer duration storms. A simulation space made up of 500, 20m×20m cells, was created using tree-lists from silviculture systems experiments in north eastern Quebec. The tree-lists for cells within the simulation space were edited to represent the plot conditions at the Quebec experimental sites, allowing simulation of a range of cell- (plot) and matrix-level (landscape) partial harvesting regimes. Above-canopy winds of various speeds were applied in order to test the initiation and propagation of damage within the simulated forest. Simulated outcomes were compared to observations of windthrow 6–7 years after partial harvesting at the field experimental site. Observed damage at the experimental site ranged from 1 to 40% of plot total basal area (mean=14%, se=1.96). For above-canopy wind speeds within the range expected for the experimental site, simulated windthrow levels in partial cuts ranged from 7 to 32% (mean=12%, se=1.94). When the combined effects of wind speed and number of iterations (∼event duration) were investigated, event duration was more important for wind speeds over 20m/s. By enabling simulation of outcomes at the tree, plot (cell) and stand (simulation space) levels, the model allows investigation of a wide range of harvesting strategies, and sets the stage for inclusion of wind disturbance in ecosystem succession models and other stand or landscape-level decision-support tools for forests in windy climates.

Suggested Citation

  • Anyomi, K.A. & Mitchell, S.J. & Ruel, J.-C., 2016. "Windthrow modelling in old-growth and multi-layered boreal forests," Ecological Modelling, Elsevier, vol. 327(C), pages 105-114.
  • Handle: RePEc:eee:ecomod:v:327:y:2016:i:c:p:105-114
    DOI: 10.1016/j.ecolmodel.2016.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016300199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastiaan Luyssaert & E. -Detlef Schulze & Annett Börner & Alexander Knohl & Dominik Hessenmöller & Beverly E. Law & Philippe Ciais & John Grace, 2008. "Old-growth forests as global carbon sinks," Nature, Nature, vol. 455(7210), pages 213-215, September.
    2. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    4. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    5. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    6. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    7. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    8. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    9. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    10. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).
    11. Graciá, Eva & Rodríguez-Caro, Roberto C. & Sanz-Aguilar, Ana & Anadón, José D. & Botella, Francisco & García-García, Angel Luis & Wiegand, Thorsten & Giménez, Andrés, 2020. "Assessment of the key evolutionary traits that prevent extinctions in human-altered habitats using a spatially explicit individual-based model," Ecological Modelling, Elsevier, vol. 415(C).
    12. Ahmed Laatabi & Nicolas Marilleau & Tri Nguyen-Huu & Hassan Hbid & Mohamed Ait Babram, 2018. "ODD+2D: An ODD Based Protocol for Mapping Data to Empirical ABMs," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(2), pages 1-9.
    13. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    14. Ahmadreza Asgharpourmasouleh & Atiye Sadeghi & Ali Yousofi, 2017. "A Grounded Agent-Based Model of Common Good Production in a Residential Complex: Applying Artificial Experiments," SAGE Open, , vol. 7(4), pages 21582440177, October.
    15. Medeiros-Sousa, Antônio Ralph & Lange, Martin & Mucci, Luis Filipe & Marrelli, Mauro Toledo & Grimm, Volker, 2024. "Modelling the transmission and spread of yellow fever in forest landscapes with different spatial configurations," Ecological Modelling, Elsevier, vol. 489(C).
    16. repec:caa:jnljfs:v:preprint:id:118-2023-jfs is not listed on IDEAS
    17. Student, Jillian & Kramer, Mark R. & Steinmann, Patrick, 2020. "Simulating emerging coastal tourism vulnerabilities: an agent-based modelling approach," Annals of Tourism Research, Elsevier, vol. 85(C).
    18. Ascensão, Fernando & Clevenger, Anthony & Santos-Reis, Margarida & Urbano, Paulo & Jackson, Nathan, 2013. "Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach," Ecological Modelling, Elsevier, vol. 257(C), pages 36-43.
    19. Anshuka Anshuka & Floris F. Ogtrop & David Sanderson & Simone Z. Leao, 2022. "A systematic review of agent-based model for flood risk management and assessment using the ODD protocol," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2739-2771, July.
    20. Brito, Izabella de Andrade & López-Barrera, Ellie Anne & Araújo, Sabrina Borges Lino & Ribeiro, Ciro Alberto de Oliveira, 2017. "Modeling the exposure risk of the silver catfish Rhamdia quelen (Teleostei, Heptapteridae) to wastewater," Ecological Modelling, Elsevier, vol. 347(C), pages 40-49.
    21. Myong-Hun Chang & Troy Tassier, 2023. "Spatial Disparities in Vaccination and the Risk of Infection in a Multi-Region Agent-Based Model of Epidemic Dynamics," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 26(3), pages 1-3.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:327:y:2016:i:c:p:105-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.