IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v309-310y2015ip143-152.html
   My bibliography  Save this article

Adaptation of aquatic insects to the current flow in streams

Author

Listed:
  • Mazzucco, Rupert
  • Van Nguyen, Tuyen
  • Kim, Dong-Hwan
  • Chon, Tae-Soo
  • Dieckmann, Ulf

Abstract

Water velocity is one of the most important abiotic factors influencing the survival of aquatic insects in rivers and streams. The unidirectional water flow shaping their habitat and characteristically dividing it into alternating zones of high and low water velocity (riffles and pools) also imposes on them the special necessity to adapt to continual downstream drift. Here, we analyze an individual-based eco-evolutionary model parameterized with field data, and show how species adapted to riffles and pools, respectively, emerge if three basic processes are considered: density-dependent local competition, drifting, and adult flight. We also find that evolutionary branching in velocity adaptation is accompanied by an differentiation of drifting behavior. Generally, individuals drift either frequently and for only a short duration, or infrequently and for a longer duration. While riffle and pool species each exhibit both drifting strategies, a third species that can stably establish at intermediate water velocities (runs) exhibits exclusively the former. As the run species is therefore particularly susceptible to drift loss, long-range adult flight turns out to be crucial for its persistence. These insights highlight the ability of process-based eco-evolutionary models to generate testable hypotheses and stimulate empirical research.

Suggested Citation

  • Mazzucco, Rupert & Van Nguyen, Tuyen & Kim, Dong-Hwan & Chon, Tae-Soo & Dieckmann, Ulf, 2015. "Adaptation of aquatic insects to the current flow in streams," Ecological Modelling, Elsevier, vol. 309, pages 143-152.
  • Handle: RePEc:eee:ecomod:v:309-310:y:2015:i::p:143-152
    DOI: 10.1016/j.ecolmodel.2015.04.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015001702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.04.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Doebeli & Ulf Dieckmann, 2003. "Speciation along environmental gradients," Nature, Nature, vol. 421(6920), pages 259-264, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    2. MacPherson, Brian & Gras, Robin, 2016. "Individual-based ecological models: Adjunctive tools or experimental systems?," Ecological Modelling, Elsevier, vol. 323(C), pages 106-114.
    3. Rubén Moreno-Opo & Mariana Fernández-Olalla & Antoni Margalida & Ángel Arredondo & Francisco Guil, 2012. "Effect of Methodological and Ecological Approaches on Heterogeneity of Nest-Site Selection of a Long-Lived Vulture," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-9, March.
    4. Benjamin Allen & Christine Sample & Yulia Dementieva & Ruben C Medeiros & Christopher Paoletti & Martin A Nowak, 2015. "The Molecular Clock of Neutral Evolution Can Be Accelerated or Slowed by Asymmetric Spatial Structure," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-32, February.
    5. Reyes, Elijah & Cunliffe, Finnerty & M’Gonigle, Leithen K., 2023. "Evolutionary dynamics of dispersal and local adaptation in multi-resource landscapes," Theoretical Population Biology, Elsevier, vol. 153(C), pages 102-110.
    6. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    7. Cressman, Ross & Halloway, Abdel & McNickle, Gordon G. & Apaloo, Joe & Brown, Joel S. & Vincent, Thomas L., 2017. "Unlimited niche packing in a Lotka–Volterra competition game," Theoretical Population Biology, Elsevier, vol. 116(C), pages 1-17.
    8. Seo Yeon Byeon & Kyeong-Sik Cheon & Sangil Kim & Suk-Hyun Yun & Hyun-Ju Oh & Sang Rul Park & Tae-Hoon Kim & Jang Kyun Kim & Hyuk Je Lee, 2020. "Comparative Analysis of Sequence Polymorphism in Complete Organelle Genomes of the ‘Golden Tide’ Seaweed Sargassum horneri between Korean and Chinese Forms," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    9. Yvonne Willi & Kay Lucek & Olivier Bachmann & Nora Walden, 2022. "Recent speciation associated with range expansion and a shift to self-fertilization in North American Arabidopsis," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Sakamoto, T. & Innan, H., 2020. "Establishment process of a magic trait allele subject to both divergent selection and assortative mating," Theoretical Population Biology, Elsevier, vol. 135(C), pages 9-18.
    11. David, Olivier & Lannou, Christian & Monod, Hervé & Papaïx, Julien & Traore, Djidi, 2017. "Adaptive diversification in heterogeneous environments," Theoretical Population Biology, Elsevier, vol. 114(C), pages 1-9.
    12. Mirrahimi, Sepideh & Raoul, Gaël, 2013. "Dynamics of sexual populations structured by a space variable and a phenotypical trait," Theoretical Population Biology, Elsevier, vol. 84(C), pages 87-103.
    13. José Camacho Mateu & Matteo Sireci & Miguel A Muñoz, 2021. "Phenotypic-dependent variability and the emergence of tolerance in bacterial populations," PLOS Computational Biology, Public Library of Science, vol. 17(9), pages 1-28, September.
    14. Omori, Koji & Ohnishi, Hidejiro & Hamaoka, Hideki & Kunihiro, Tadao & Ito, Sayaka & Kuwae, Michinobu & Hata, Hiroki & Miller, Todd W. & Iguchi, Keiichiro, 2012. "Speciation of fluvial forms from amphidromous forms of migratory populations," Ecological Modelling, Elsevier, vol. 243(C), pages 89-94.
    15. José Martín Pujolar & Mozes P. K. Blom & Andrew Hart Reeve & Jonathan D. Kennedy & Petter Zahl Marki & Thorfinn S. Korneliussen & Benjamin G. Freeman & Katerina Sam & Ethan Linck & Tri Haryoko & Bulis, 2022. "The formation of avian montane diversity across barriers and along elevational gradients," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    16. Rettelbach, Agnes & Hermisson, Joachim & Dieckmann, Ulf & Kopp, Michael, 2011. "Effects of genetic architecture on the evolution of assortative mating under frequency-dependent disruptive selection," Theoretical Population Biology, Elsevier, vol. 79(3), pages 82-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:309-310:y:2015:i::p:143-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.