IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v303y2015icp19-29.html
   My bibliography  Save this article

Modeling autumn migration of a rare soaring raptor identifies new movement corridors in central Appalachia

Author

Listed:
  • Dennhardt, Andrew J.
  • Duerr, Adam E.
  • Brandes, David
  • Katzner, Todd E.

Abstract

Understanding animal movements is fundamental to ecology and conservation, yet direct measurement of movements of birds is both challenging and costly. Raptor behavior and demography are especially difficult to monitor, but models of movement can provide information toward this goal. The golden eagle (Aquila chrysaetos) in eastern North America is an apex predator of regional conservation concern, and little is known about its population ecology, movements, or behavior. We designed an agent-based model to simulate autumn migration of eagles in Pennsylvania, USA. Inputs to the model included information on regional topography, known flight behaviors (i.e. slope-soaring and thermal-soaring and gliding), estimated uplift, and a principal axis of migration. In total, we modeled 6094 flight routes, averaging 2191 (±1281; ±SD; range: 3–5373) moves. Simulations were spatially comparable to historic flight route data collected via telemetry and generally followed topography that provided uplift. In our model, orographic uplift available to migrant eagles was stronger and more frequent than thermal uplift, and uplift forms were not correlated with one another (r=−0.145). Modeled golden eagle migration in autumn follows a narrow-front pattern as individuals are concentrated in areas that produce orographic uplift. Simulated flights were more concentrated on days when historic counts of golden eagles were high at monitoring sites. In contrast, simulations were more dispersed on days when fewer actual eagles were recorded. We used output from our simulations to select new sites that could be used for monitoring migratory raptors. Relatively large numbers of golden eagles were observed at these sites, thus validating performance of our model. This work identifies a novel, cost-effective method for modeling migration patterns of and furthering conservation goals for a rare, low-density raptor species.

Suggested Citation

  • Dennhardt, Andrew J. & Duerr, Adam E. & Brandes, David & Katzner, Todd E., 2015. "Modeling autumn migration of a rare soaring raptor identifies new movement corridors in central Appalachia," Ecological Modelling, Elsevier, vol. 303(C), pages 19-29.
  • Handle: RePEc:eee:ecomod:v:303:y:2015:i:c:p:19-29
    DOI: 10.1016/j.ecolmodel.2015.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    2. Fabrizio Sergio & Ian Newton & Luigi Marchesi, 2005. "Top predators and biodiversity," Nature, Nature, vol. 436(7048), pages 192-192, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandhu, Rimple & Tripp, Charles & Quon, Eliot & Thedin, Regis & Lawson, Michael & Brandes, David & Farmer, Christopher J. & Miller, Tricia A. & Draxl, Caroline & Doubrawa, Paula & Williams, Lindy & Du, 2022. "Stochastic agent-based model for predicting turbine-scale raptor movements during updraft-subsidized directional flights," Ecological Modelling, Elsevier, vol. 466(C).
    2. Francis Oloo & Kamran Safi & Jagannath Aryal, 2018. "Predicting Migratory Corridors of White Storks, Ciconia ciconia , to Enhance Sustainable Wind Energy Planning: A Data-Driven Agent-Based Model," Sustainability, MDPI, vol. 10(5), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    3. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    4. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    5. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    6. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    7. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    8. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    9. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    10. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    11. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    12. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    13. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    14. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    15. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    16. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    17. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    18. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).
    19. Bauduin, Sarah & Grente, Oksana & Santostasi, Nina Luisa & Ciucci, Paolo & Duchamp, Christophe & Gimenez, Olivier, 2020. "An individual-based model to explore the impacts of lesser-known social dynamics on wolf populations," Ecological Modelling, Elsevier, vol. 433(C).
    20. Zhai, Xueting & Zhong, Dixi & Luo, Qiuju, 2019. "Turn it around in crisis communication: An ABM approach," Annals of Tourism Research, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:303:y:2015:i:c:p:19-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.