IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v296y2015icp102-112.html
   My bibliography  Save this article

A model-based approach for investigation and mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in central India

Author

Listed:
  • Belsare, Aniruddha V.
  • Gompper, Matthew E.

Abstract

Multi-host pathogens can pose a serious conservation threat when free-ranging domestic animal populations occur alongside susceptible populations of wild species. An example is canine distemper virus (CDV), which can occur at high prevalence in domestic dog (Canis familiaris) populations from which it may be transmitted (spillover) into wild carnivore populations. Effective management of such disease threats is hindered by our limited understanding of the the dynamics of interspecific CDV transmission in natural settings. We used a modeling approach to better understand CDV spillover threats to wild Indian foxes (Vulpes bengalensis) occurring in a protected grassland habitat in central India. An agent-based stochastic simulation model was built, and parameterized with data from ecological and epidemiological studies. Based on the sensitivity analyses of the model, the CDV incidence rate in dogs was most influenced by the proportion of roamer dogs in the dog population. The CDV incidence rate in dogs was also sensitive to the CDV introduction frequency in the dog population. The proportion of roamer dogs in the dog population also influenced the number of CDV spillover events. The basic reproductive number (R0) for CDV in the model fox population was 0.85, indicating that CDV could not be independently sustained in the fox population. We used the model to explore potential management strategies to mitigate the risk of CDV spillover. Vaccination of local dog populations was an ineffective disease control strategy, while fox vaccination was highly effective. Interventions potentially resulting in lower contact rates between dogs and foxes, like reduction in village dog density and restricting dog movements in fox habitat, implemented in a sustained and integrated manner would be most effective in mitigating disease threats to foxes. Such modeling approaches can be used to better understand disease threats for other species of management concern, and to contrast potential management interventions.

Suggested Citation

  • Belsare, Aniruddha V. & Gompper, Matthew E., 2015. "A model-based approach for investigation and mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in central India," Ecological Modelling, Elsevier, vol. 296(C), pages 102-112.
  • Handle: RePEc:eee:ecomod:v:296:y:2015:i:c:p:102-112
    DOI: 10.1016/j.ecolmodel.2014.10.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014005298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.10.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    2. Bar Massada, Avi & Carmel, Yohay, 2008. "Incorporating output variance in local sensitivity analysis for stochastic models," Ecological Modelling, Elsevier, vol. 213(3), pages 463-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoak, Andrew J. & Reece, John F. & Gehrt, Stanley D. & Hamilton, Ian M., 2016. "Optimizing free-roaming dog control programs using agent-based models," Ecological Modelling, Elsevier, vol. 341(C), pages 53-61.
    2. Tian, Fenghao & Li, Mingyu & Han, Xulong & Liu, Hui & Mo, Boxian, 2020. "A Production–Living–Ecological Space Model for Land-Use Optimisation: A case study of the core Tumen River region in China," Ecological Modelling, Elsevier, vol. 437(C).
    3. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engel, Markus & Körner, Michael & Berger, Uta, 2018. "Plastic tree crowns contribute to small-scale heterogeneity in virgin beech forests—An individual-based modeling approach," Ecological Modelling, Elsevier, vol. 376(C), pages 28-39.
    2. Piacenza, Susan E. & Richards, Paul M. & Heppell, Selina S., 2017. "An agent-based model to evaluate recovery times and monitoring strategies to increase accuracy of sea turtle population assessments," Ecological Modelling, Elsevier, vol. 358(C), pages 25-39.
    3. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    4. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    5. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    6. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    7. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    8. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    9. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    10. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    11. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    12. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    13. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    14. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    15. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    16. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    17. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    18. Fenintsoa Andriamasinoro & Raphael Danino-Perraud, 2021. "Use of artificial intelligence to assess mineral substance criticality in the French market: the example of cobalt," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(1), pages 19-37, April.
    19. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    20. Dur, Gaël & Won, Eun-Ji & Han, Jeonghoon & Lee, Jae-Seong & Souissi, Sami, 2021. "An individual-based model for evaluating post-exposure effects of UV-B radiation on zooplankton reproduction," Ecological Modelling, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:296:y:2015:i:c:p:102-112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.