IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v284y2014icp19-34.html
   My bibliography  Save this article

The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: A modelling study

Author

Listed:
  • Mongin, Mathieu
  • Baird, Mark

Abstract

The diurnal fluctuations in seawater carbon chemistry that occur at sites within a coral reef system are due to water circulation, air-sea heat and gas exchange, and biogeochemical processes. The daily changes in dissolved carbon ion speciation and pHT on reefs can be larger than the century-scale shifts predicted for open ocean waters under climate change scenarios. We implement a 167m resolution 3D hydrodynamic model of a coral reef (Heron Island reef, southern Great Barrier Reef, Australia) and couple it to a carbon biogeochemistry model. The model is forced by benthic fluxes calculated using a detailed habitat map and light and habitat-dependent parameterisations of calcification/photosynthesis developed from flume studies on Heron Island. During a two month simulation the model is able to reproduce the observed variability in the water temperature at 8 locations within the reef, demonstrating an ability of the model to capture the circulation. The simulation shows that the dominant processes driving the variability in carbonate chemistry at a location on the reef are the location of the different benthic communities and the path the water has taken to arrive at that location. A spatially-resolved age tracer indicates that the residence time of water over the reef varied between 16 and 60h, depending on tides, winds and location. The longer transit times over the reef reduced the aragonite saturation state, Ωa, in the overlying water to as low as 2. In the model simulation, the reef ecosystem reduces Ωa at a rate of 0.018 per hour on the reef. A scenario in which we removed the non-calcifying benthic microalgae from the reef showed a reduction in the Ωa in some regions from 5 to 2.5, and an average reduction of the coral calcification by 15%. This demonstrates the importance of processes that can alter the photosynthesis/respiration and calcification/dissolution balance when considering climate change impacts due to ocean acidification on corals at the reef scale.

Suggested Citation

  • Mongin, Mathieu & Baird, Mark, 2014. "The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: A modelling study," Ecological Modelling, Elsevier, vol. 284(C), pages 19-34.
  • Handle: RePEc:eee:ecomod:v:284:y:2014:i:c:p:19-34
    DOI: 10.1016/j.ecolmodel.2014.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014001859
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James C. Orr & Victoria J. Fabry & Olivier Aumont & Laurent Bopp & Scott C. Doney & Richard A. Feely & Anand Gnanadesikan & Nicolas Gruber & Akio Ishida & Fortunat Joos & Robert M. Key & Keith Lindsay, 2005. "Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms," Nature, Nature, vol. 437(7059), pages 681-686, September.
    2. Ken Caldeira & Michael E. Wickett, 2003. "Anthropogenic carbon and ocean pH," Nature, Nature, vol. 425(6956), pages 365-365, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baird, Mark E. & Adams, Matthew P. & Babcock, Russell C. & Oubelkheir, Kadija & Mongin, Mathieu & Wild-Allen, Karen A. & Skerratt, Jennifer & Robson, Barbara J. & Petrou, Katherina & Ralph, Peter J. &, 2016. "A biophysical representation of seagrass growth for application in a complex shallow-water biogeochemical model," Ecological Modelling, Elsevier, vol. 325(C), pages 13-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Wang & Peiling Yao & Jiaming Liu & Xun Wang & Jingjing Mao & Jiayuan Xu & Jiarui Wang, 2023. "Reconstruction of Surface Seawater pH in the North Pacific," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    2. Richards, Russell & Chaloupka, Milani & Sanò, Marcello & Tomlinson, Rodger, 2011. "Modelling the effects of ‘coastal’ acidification on copper speciation," Ecological Modelling, Elsevier, vol. 222(19), pages 3559-3567.
    3. Detlef Vuuren & Elke Stehfest, 2013. "If climate action becomes urgent: the importance of response times for various climate strategies," Climatic Change, Springer, vol. 121(3), pages 473-486, December.
    4. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    5. Bourret, A. & Martin, Y. & Troussellier, M., 2007. "Modelling the response of microbial food web to an increase of atmospheric CO2 partial pressure in a marine Mediterranean coastal ecosystem (Brusc Lagoon, France)," Ecological Modelling, Elsevier, vol. 208(2), pages 189-204.
    6. Malone, Thomas C. & DiGiacomo, Paul M. & Gonçalves, Emanuel & Knap, Anthony H. & Talaue-McManus, Liana & de Mora, Stephen, 2014. "A global ocean observing system framework for sustainable development," Marine Policy, Elsevier, vol. 43(C), pages 262-272.
    7. Simen Alexander Linge Johnsen & Jörg Bollmann, 2020. "Coccolith mass and morphology of different Emiliania huxleyi morphotypes: A critical examination using Canary Islands material," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-29, March.
    8. Ullah, Kifayat & Kumar Sharma, Vinod & Dhingra, Sunil & Braccio, Giacobbe & Ahmad, Mushtaq & Sofia, Sofia, 2015. "Assessing the lignocellulosic biomass resources potential in developing countries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 682-698.
    9. Ollier Clifford, 2019. "The hoax of ocean acidification," Quaestiones Geographicae, Sciendo, vol. 38(3), pages 59-66, September.
    10. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    11. Rau, Greg H. & Knauss, Kevin G. & Langer, William H. & Caldeira, Ken, 2007. "Reducing energy-related CO2 emissions using accelerated weathering of limestone," Energy, Elsevier, vol. 32(8), pages 1471-1477.
    12. Ricardo Gómez-Reyes & Clara E. Galindo-Sánchez & Fabiola Lafarga-De la Cruz & José M. Hernández-Ayón & Enrique Valenzuela-Wood & Laura López-Galindo, 2023. "Individual Pattern Response to CO 2 -Induced Acidification Stress in Haliotis rufescens Suggests Stage-Specific Acclimatization during Its Early Life History," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    13. Tamayo, Natasha Charmaine A. & Anticamara, Jonathan A. & Acosta-Michlik, Lilibeth, 2018. "National Estimates of Values of Philippine Reefs' Ecosystem Services," Ecological Economics, Elsevier, vol. 146(C), pages 633-644.
    14. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    15. Ponce Oliva, Roberto D. & Vasquez-Lavín, Felipe & San Martin, Valeska A. & Hernández, José Ignacio & Vargas, Cristian A. & Gonzalez, Pablo S. & Gelcich, Stefan, 2019. "Ocean Acidification, Consumers' Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry," Ecological Economics, Elsevier, vol. 158(C), pages 42-50.
    16. Greasley, David & Hanley, Nicholas & Kunnas, Jan & McLaughlin, Eoin & Oxley, Les & Warde, Paul, 2012. "How Environmental Pollution from Fossil Fuels can be included in measures of National Accounts and Estimates of Genuine Savings," Stirling Economics Discussion Papers 2012-16, University of Stirling, Division of Economics.
    17. Daiju Narita & Katrin Rehdanz & Richard Tol, 2012. "Economic costs of ocean acidification: a look into the impacts on global shellfish production," Climatic Change, Springer, vol. 113(3), pages 1049-1063, August.
    18. Alva-Basurto, Jorge Christian & Arias-González, Jesús Ernesto, 2014. "Modelling the effects of climate change on a Caribbean coral reef food web," Ecological Modelling, Elsevier, vol. 289(C), pages 1-14.
    19. Choi, Jun-Ki & Friley, Paul & Alfstad, Thomas, 2012. "Implications of energy policy on a product system's dynamic life-cycle environmental impact: Survey and model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4744-4752.
    20. Narita, Daiju & Rehdanz, Katrin & Tol, Richard S. J., 2011. "Economic Costs of Ocean Acidification: A Look into the Impacts on Shellfish Production," Papers WP391, Economic and Social Research Institute (ESRI).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:284:y:2014:i:c:p:19-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.