IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p14010-d1244672.html
   My bibliography  Save this article

Individual Pattern Response to CO 2 -Induced Acidification Stress in Haliotis rufescens Suggests Stage-Specific Acclimatization during Its Early Life History

Author

Listed:
  • Ricardo Gómez-Reyes

    (Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico)

  • Clara E. Galindo-Sánchez

    (Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada 22860, Baja California, Mexico)

  • Fabiola Lafarga-De la Cruz

    (Departamento de Acuicultura, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, Ensenada 22860, Baja California, Mexico)

  • José M. Hernández-Ayón

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico)

  • Enrique Valenzuela-Wood

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico)

  • Laura López-Galindo

    (Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada 22860, Baja California, Mexico)

Abstract

The red abalone Haliotis rufescens is a pivotal marine resource in the context of worldwide abalone aquaculture. However, the species has been listed as critically endangered partly because of the life-history massive mortalities associated with habitat climate changes, including short- and long-term ocean acidification. Because abalone survival depends on its early life history success, figuring out its vulnerability to acidification is the first step to establishing culture management strategies. In the present study, red abalone embryos were reared under long-term CO 2 -induced acidification (pH 7.8 and 7.6) and evaluated. The impairment prevalence was assessed during their larval stages, considering the developmental success, growth and calcification. The result in the stage-specific disturbance suggests that the body abilities evaluated are at the expense of their development stages, of which the critical threshold is found under −0.4 pH units. Finally, the settlement was short-term stressed, displaying the opposite to that observed in the long-term acidification. Thus, the early life history interacts through multiple pathways that may also depend on the acidification challenge (i.e., short or long term). Understanding the tolerance limits and pathways of the stress response provides valuable insights for exploring the vulnerability of H. rufescens to ocean acidification.

Suggested Citation

  • Ricardo Gómez-Reyes & Clara E. Galindo-Sánchez & Fabiola Lafarga-De la Cruz & José M. Hernández-Ayón & Enrique Valenzuela-Wood & Laura López-Galindo, 2023. "Individual Pattern Response to CO 2 -Induced Acidification Stress in Haliotis rufescens Suggests Stage-Specific Acclimatization during Its Early Life History," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14010-:d:1244672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/14010/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/14010/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. James C. Orr & Victoria J. Fabry & Olivier Aumont & Laurent Bopp & Scott C. Doney & Richard A. Feely & Anand Gnanadesikan & Nicolas Gruber & Akio Ishida & Fortunat Joos & Robert M. Key & Keith Lindsay, 2005. "Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms," Nature, Nature, vol. 437(7059), pages 681-686, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Kifayat & Kumar Sharma, Vinod & Dhingra, Sunil & Braccio, Giacobbe & Ahmad, Mushtaq & Sofia, Sofia, 2015. "Assessing the lignocellulosic biomass resources potential in developing countries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 682-698.
    2. Tamayo, Natasha Charmaine A. & Anticamara, Jonathan A. & Acosta-Michlik, Lilibeth, 2018. "National Estimates of Values of Philippine Reefs' Ecosystem Services," Ecological Economics, Elsevier, vol. 146(C), pages 633-644.
    3. Jie Wang & Peiling Yao & Jiaming Liu & Xun Wang & Jingjing Mao & Jiayuan Xu & Jiarui Wang, 2023. "Reconstruction of Surface Seawater pH in the North Pacific," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    4. Nathalie Hilmi & Denis Allemand & Sam Dupont & Alain Safa & Gunnar Haraldsson & Paulo Nunes & Chris Moore & Caroline Hattam & Stéphanie Reynaud & Jason Hall-Spencer & Maoz Fine & Carol Turley & Ross J, 2013. "Towards improved socio-economic assessments of ocean acidification’s impacts," Post-Print hal-03208182, HAL.
    5. Mongin, Mathieu & Baird, Mark, 2014. "The interacting effects of photosynthesis, calcification and water circulation on carbon chemistry variability on a coral reef flat: A modelling study," Ecological Modelling, Elsevier, vol. 284(C), pages 19-34.
    6. Richards, Russell & Chaloupka, Milani & Sanò, Marcello & Tomlinson, Rodger, 2011. "Modelling the effects of ‘coastal’ acidification on copper speciation," Ecological Modelling, Elsevier, vol. 222(19), pages 3559-3567.
    7. Xiao Zhang & Shengchao Ye & Manhong Shen, 2023. "Driving Factors and Spatiotemporal Characteristics of CO 2 Emissions from Marine Fisheries in China: A Commonly Neglected Carbon-Intensive Sector," IJERPH, MDPI, vol. 20(1), pages 1-17, January.
    8. Werner, Francisco E. & Ito, Shin-Ichi & Megrey, Bernard A. & Kishi, Michio J., 2007. "Synthesis of the NEMURO model studies and future directions of marine ecosystem modeling," Ecological Modelling, Elsevier, vol. 202(1), pages 211-223.
    9. Pringle, Adam M. & Handler, R.M. & Pearce, J.M., 2017. "Aquavoltaics: Synergies for dual use of water area for solar photovoltaic electricity generation and aquaculture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 572-584.
    10. Hofmann Elizondo, Urs & Vogt, Meike, 2022. "Individual-based modeling of shelled pteropods," Ecological Modelling, Elsevier, vol. 468(C).
    11. Pikesley, Stephen K. & Godley, Brendan J. & Latham, Holly & Richardson, Peter B. & Robson, Laura M. & Solandt, Jean-Luc & Trundle, Colin & Wood, Chris & Witt, Matthew J., 2016. "Pink sea fans (Eunicella verrucosa) as indicators of the spatial efficacy of Marine Protected Areas in southwest UK coastal waters," Marine Policy, Elsevier, vol. 64(C), pages 38-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:14010-:d:1244672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.