IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i19p3531-3540.html
   My bibliography  Save this article

Hierarchical Bayesian modelling of plant pest invasions with human-mediated dispersal

Author

Listed:
  • Stanaway, M.A.
  • Reeves, R.
  • Mengersen, K.L.

Abstract

Hierarchical Bayesian models can assimilate surveillance and ecological information to estimate both invasion extent and model parameters for invading plant pests spread by people. A reliability analysis framework that can accommodate multiple dispersal modes is developed to estimate human-mediated dispersal parameters for an invasive species. Uncertainty in the observation process is modelled by accounting for local natural spread and population growth within spatial units. Broad scale incursion dynamics are based on a mechanistic gravity model with a Weibull distribution modification to incorporate a local pest build-up phase. The model uses Markov chain Monte Carlo simulations to infer the probability of colonisation times for discrete spatial units and to estimate connectivity parameters between these units. The hierarchical Bayesian model with observational and ecological components is applied to a surveillance dataset for a spiralling whitefly (Aleurodicus dispersus) invasion in Queensland, Australia. The model structure provides a useful application that draws on surveillance data and ecological knowledge that can be used to manage the risk of pest movement.

Suggested Citation

  • Stanaway, M.A. & Reeves, R. & Mengersen, K.L., 2011. "Hierarchical Bayesian modelling of plant pest invasions with human-mediated dispersal," Ecological Modelling, Elsevier, vol. 222(19), pages 3531-3540.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:19:p:3531-3540
    DOI: 10.1016/j.ecolmodel.2011.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011004303
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    2. Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
    3. Christopher Wikle & Mevin Hooten, 2010. "Rejoinder on: A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 466-468, November.
    4. Fabre, Frédéric & Dedryver, Charles-Antoine & Plantegenest, Manuel & Hullé, Maurice & Rivot, Etienne, 2010. "Hierarchical Bayesian Modelling of plant colonisation by winged aphids: Inferring dispersal processes by linking aerial and field count data," Ecological Modelling, Elsevier, vol. 221(15), pages 1770-1778.
    5. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    6. Carrasco, L.R. & Mumford, J.D. & MacLeod, A. & Knight, J.D. & Baker, R.H.A., 2010. "Comprehensive bioeconomic modelling of multiple harmful non-indigenous species," Ecological Economics, Elsevier, vol. 69(6), pages 1303-1312, April.
    7. Harwood, Thomas D. & Xu, Xiangming & Pautasso, Marco & Jeger, Mike J. & Shaw, Michael W., 2009. "Epidemiological risk assessment using linked network and grid based modelling: Phytophthora ramorum and Phytophthora kernoviae in the UK," Ecological Modelling, Elsevier, vol. 220(23), pages 3353-3361.
    8. Hooten, Mevin B. & Wikle, Christopher K., 2010. "Statistical Agent-Based Models for Discrete Spatio-Temporal Systems," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 236-248.
    9. Carrasco, L.R. & Mumford, J.D. & MacLeod, A. & Harwood, T. & Grabenweger, G. & Leach, A.W. & Knight, J.D. & Baker, R.H.A., 2010. "Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models," Ecological Modelling, Elsevier, vol. 221(17), pages 2068-2075.
    10. Mevin B. Hooten & Christopher K. Wikle & Robert M. Dorazio & J. Andrew Royle, 2007. "Hierarchical Spatiotemporal Matrix Models for Characterizing Invasions," Biometrics, The International Biometric Society, vol. 63(2), pages 558-567, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douma, J.C. & Pautasso, M. & Venette, R.C. & Robinet, C. & Hemerik, L. & Mourits, M.C.M. & Schans, J. & van der Werf, W., 2016. "Pathway models for analysing and managing the introduction of alien plant pests—an overview and categorization," Ecological Modelling, Elsevier, vol. 339(C), pages 58-67.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    2. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    3. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    4. Matthew Bonas & Christopher K. Wikle & Stefano Castruccio, 2024. "Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    5. Carrasco, L. Roman & Cook, David & Baker, Richard & MacLeod, Alan & Knight, Jon D. & Mumford, John D., 2012. "Towards the integration of spread and economic impacts of biological invasions in a landscape of learning and imitating agents," Ecological Economics, Elsevier, vol. 76(C), pages 95-103.
    6. Huang Huang & Stefano Castruccio & Marc G. Genton, 2022. "Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 449-466, March.
    7. Sondre Hølleland & Hans Arnfinn Karlsen, 2020. "A Stationary Spatio‐Temporal GARCH Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 177-209, March.
    8. Birgit Schrödle & Leonhard Held & Håvard Rue, 2012. "Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases," Biometrics, The International Biometric Society, vol. 68(3), pages 736-744, September.
    9. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    10. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    11. Ole F. Christensen, 2012. "Statistics for Spatio-Temporal Data by CRESSIE, N. and WIKLE, C. K," Biometrics, The International Biometric Society, vol. 68(4), pages 1328-1329, December.
    12. Robert Richardson & Athanasios Kottas & Bruno Sansó, 2020. "Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1371-1392, December.
    13. Christopher K. Wikle, 2019. "Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 175-203, June.
    14. Sudipto Banerjee, 2023. "Discussion of “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach” by Huang Huang, Stefano Castruccio, Allison H. Baker and Marc Genton," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 365-369, June.
    15. Bonneau, Mathieu & Johnson, Fred A. & Romagosa, Christina M., 2016. "Spatially explicit control of invasive species using a reaction–diffusion model," Ecological Modelling, Elsevier, vol. 337(C), pages 15-24.
    16. Szalai, Márk & Kiss, József & Kövér, Szilvia & Toepfer, Stefan, 2014. "Simulating crop rotation strategies with a spatiotemporal lattice model to improve legislation for the management of the maize pest Diabrotica virgifera virgifera," Agricultural Systems, Elsevier, vol. 124(C), pages 39-50.
    17. Douma, J.C. & Pautasso, M. & Venette, R.C. & Robinet, C. & Hemerik, L. & Mourits, M.C.M. & Schans, J. & van der Werf, W., 2016. "Pathway models for analysing and managing the introduction of alien plant pests—an overview and categorization," Ecological Modelling, Elsevier, vol. 339(C), pages 58-67.
    18. Dey, Soumen & Moqanaki, Ehsan & Milleret, Cyril & Dupont, Pierre & Tourani, Mahdieh & Bischof, Richard, 2023. "Modelling spatially autocorrelated detection probabilities in spatial capture-recapture using random effects," Ecological Modelling, Elsevier, vol. 479(C).
    19. Cécile Hardouin & Noel Cressie, 2018. "Two-scale spatial models for binary data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(1), pages 1-24, March.
    20. Giri Gopalan & Christopher K. Wikle, 2022. "A Higher-Order Singular Value Decomposition Tensor Emulator for Spatiotemporal Simulators," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 22-45, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:19:p:3531-3540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.