IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v337y2016icp15-24.html
   My bibliography  Save this article

Spatially explicit control of invasive species using a reaction–diffusion model

Author

Listed:
  • Bonneau, Mathieu
  • Johnson, Fred A.
  • Romagosa, Christina M.

Abstract

Invasive species, which can be responsible for severe economic and environmental damages, must often be managed over a wide area with limited resources, and the optimal allocation of effort in space and time can be challenging. If the spatial range of the invasive species is large, control actions might be applied only on some parcels of land, for example because of property type, accessibility, or limited human resources. Selecting the locations for control is critical and can significantly impact management efficiency. To help make decisions concerning the spatial allocation of control actions, we propose a simulation based approach, where the spatial distribution of the invader is approximated by a reaction–diffusion model. We extend the classic Fisher equation to incorporate the effect of control both in the diffusion and local growth of the invader. The modified reaction–diffusion model that we propose accounts for the effect of control, not only on the controlled locations, but on neighboring locations, which are based on the theoretical speed of the invasion front. Based on simulated examples, we show the superiority of our model compared to the state-of-the-art approach. We illustrate the use of this model for the management of Burmese pythons in the Everglades (Florida, USA). Thanks to the generality of the modified reaction–diffusion model, this framework is potentially suitable for a wide class of management problems and provides a tool for managers to predict the effects of different management strategies.

Suggested Citation

  • Bonneau, Mathieu & Johnson, Fred A. & Romagosa, Christina M., 2016. "Spatially explicit control of invasive species using a reaction–diffusion model," Ecological Modelling, Elsevier, vol. 337(C), pages 15-24.
  • Handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:15-24
    DOI: 10.1016/j.ecolmodel.2016.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016301934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaiser, Brooks A. & Burnett, Kimberly M., 2010. "Spatial economic analysis of early detection and rapid response strategies for an invasive species," Resource and Energy Economics, Elsevier, vol. 32(4), pages 566-585, November.
    2. Mehta, Shefali V. & Haight, Robert G. & Homans, Frances R. & Polasky, Stephen & Venette, Robert C., 2007. "Optimal detection and control strategies for invasive species management," Ecological Economics, Elsevier, vol. 61(2-3), pages 237-245, March.
    3. Olson, Lars J., 2006. "The Economics of Terrestrial Invasive Species: A Review of the Literature," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 178-194, April.
    4. Horie, Tetsuya & Homans, Frances R., 2007. "Optimal Detection Strategies for an Established Invasive Forest Pest," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 9695, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Christopher Wikle & Mevin Hooten, 2010. "Rejoinder on: A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 466-468, November.
    6. Provencher, Louis & Forbis, Tara A. & Frid, Leonardo & Medlyn, Gary, 2007. "Comparing alternative management strategies of fire, grazing, and weed control using spatial modeling," Ecological Modelling, Elsevier, vol. 209(2), pages 249-263.
    7. Christopher Wikle & Mevin Hooten, 2010. "A general science-based framework for dynamical spatio-temporal models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(3), pages 417-451, November.
    8. Acevedo, Miguel A. & Marcano, Mariano & Fletcher, Robert J., 2012. "A diffusive logistic growth model to describe forest recovery," Ecological Modelling, Elsevier, vol. 244(C), pages 13-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marangi, Carmela & Martiradonna, Angela & Ragni, Stefania, 2023. "Optimal resource allocation for spatiotemporal control of invasive species," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    2. Bonneau, Mathieu & Martin, Julien & Peyrard, Nathalie & Rodgers, Leroy & Romagosa, Christina M. & Johnson, Fred A., 2019. "Optimal spatial allocation of control effort to manage invasives in the face of imperfect detection and misclassification," Ecological Modelling, Elsevier, vol. 392(C), pages 108-116.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. İ. Esra Büyüktahtakın & Robert G. Haight, 2018. "A review of operations research models in invasive species management: state of the art, challenges, and future directions," Annals of Operations Research, Springer, vol. 271(2), pages 357-403, December.
    2. Wilson J. Wright & Peter N. Neitlich & Alyssa E. Shiel & Mevin B. Hooten, 2022. "Mechanistic spatial models for heavy metal pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 33(8), December.
    3. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    4. Jardine, Sunny L. & Sanchirico, James N., 2018. "Estimating the cost of invasive species control," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 242-257.
    5. Lee, Donna J. & Motoki, Michael & Vanderwoude, Casper & Nakamoto, Stuart T. & Leung, PingSun, 2015. "Taking the sting out of Little Fire Ant in Hawaii," Ecological Economics, Elsevier, vol. 111(C), pages 100-110.
    6. Matthew Bonas & Christopher K. Wikle & Stefano Castruccio, 2024. "Calibrated forecasts of quasi‐periodic climate processes with deep echo state networks and penalized quantile regression," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    7. Cacho, Oscar J. & Hester, Susan M., 2011. "Deriving efficient frontiers for effort allocation in the management of invasive species," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 55(1), pages 1-18.
    8. Huang Huang & Stefano Castruccio & Marc G. Genton, 2022. "Forecasting high‐frequency spatio‐temporal wind power with dimensionally reduced echo state networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 449-466, March.
    9. Sondre Hølleland & Hans Arnfinn Karlsen, 2020. "A Stationary Spatio‐Temporal GARCH Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 177-209, March.
    10. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    11. Birgit Schrödle & Leonhard Held & Håvard Rue, 2012. "Assessing the Impact of a Movement Network on the Spatiotemporal Spread of Infectious Diseases," Biometrics, The International Biometric Society, vol. 68(3), pages 736-744, September.
    12. Al-Sulami, Dawlah & Jiang, Zhenyu & Lu, Zudi & Zhu, Jun, 2017. "Estimation for semiparametric nonlinear regression of irregularly located spatial time-series data," Econometrics and Statistics, Elsevier, vol. 2(C), pages 22-35.
    13. Philip A. White & Durban G. Keeler & Daniel Sheanshang & Summer Rupper, 2022. "Improving piecewise linear snow density models through hierarchical spatial and orthogonal functional smoothing," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    14. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    15. Ole F. Christensen, 2012. "Statistics for Spatio-Temporal Data by CRESSIE, N. and WIKLE, C. K," Biometrics, The International Biometric Society, vol. 68(4), pages 1328-1329, December.
    16. Onal, Sevilay & Akhundov, Najmaddin & Büyüktahtakın, İ. Esra & Smith, Jennifer & Houseman, Gregory R., 2020. "An integrated simulation-optimization framework to optimize search and treatment path for controlling a biological invader," International Journal of Production Economics, Elsevier, vol. 222(C).
    17. Robert Richardson & Athanasios Kottas & Bruno Sansó, 2020. "Spatiotemporal modelling using integro‐difference equations with bivariate stable kernels," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(5), pages 1371-1392, December.
    18. Christopher K. Wikle, 2019. "Comparison of Deep Neural Networks and Deep Hierarchical Models for Spatio-Temporal Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(2), pages 175-203, June.
    19. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    20. Yemshanov, Denys & Koch, Frank H. & Lu, Bo & Lyons, D. Barry & Prestemon, Jeffrey P. & Scarr, Taylor & Koehler, Klaus, 2014. "There is no silver bullet: The value of diversification in planning invasive species surveillance," Ecological Economics, Elsevier, vol. 104(C), pages 61-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:15-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.