IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i14p2570-2583.html
   My bibliography  Save this article

Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures

Author

Listed:
  • Larocque, Guy R.
  • Archambault, Louis
  • Delisle, Claude

Abstract

When the development of gap models began about three decades ago, they became a new category of forest productivity models. Compared with traditional growth and yield models, which aim at deriving empirical relationships that best fit data, gap models use semi-theoretical relationships to simulate biotic and abiotic processes in forest stands, including the effects of photosynthetic active radiation interception, site fertility, temperature and soil moisture on tree growth and seedling establishment. While growth and yield models are appropriate to predict short-term stemwood production, gap models may be used to predict the natural course of species replacement for several generations. Because of the poor availability of historical data and knowledge on species-specific allometric relationships, species replacement and death rate, it has seldom been possible to develop and evaluate the most representative algorithms to predict growth and mortality with a high degree of accuracy. For this reason, the developers of gap models focused more on developing simulation tools to improve the understanding of forest succession than predicting growth and yield accurately.

Suggested Citation

  • Larocque, Guy R. & Archambault, Louis & Delisle, Claude, 2011. "Development of the gap model ZELIG-CFS to predict the dynamics of North American mixed forest types with complex structures," Ecological Modelling, Elsevier, vol. 222(14), pages 2570-2583.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2570-2583
    DOI: 10.1016/j.ecolmodel.2010.08.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Didion, M. & Kupferschmid, A.D. & Lexer, M.J. & Rammer, W. & Seidl, R. & Bugmann, H., 2009. "Potentials and limitations of using large-scale forest inventory data for evaluating forest succession models," Ecological Modelling, Elsevier, vol. 220(2), pages 133-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brazhnik, Ksenia & Shugart, H.H., 2016. "SIBBORK: A new spatially-explicit gap model for boreal forest," Ecological Modelling, Elsevier, vol. 320(C), pages 182-196.
    2. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    3. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2015. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 306(C), pages 318-325.
    4. Holm, Jennifer A. & Shugart, H.H. & Van Bloem, S.J. & Larocque, G.R., 2012. "Gap model development, validation, and application to succession of secondary subtropical dry forests of Puerto Rico," Ecological Modelling, Elsevier, vol. 233(C), pages 70-82.
    5. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Filling the gap: A compositional gap regeneration model for managed northern hardwood forests," Ecological Modelling, Elsevier, vol. 253(C), pages 17-27.
    6. Millington, James D.A. & Walters, Michael B. & Matonis, Megan S. & Liu, Jianguo, 2013. "Modelling for forest management synergies and trade-offs: Northern hardwood tree regeneration, timber and deer," Ecological Modelling, Elsevier, vol. 248(C), pages 103-112.
    7. Brazhnik, Ksenia & Shugart, H.H., 2017. "Model sensitivity to spatial resolution and explicit light representation for simulation of boreal forests in complex terrain," Ecological Modelling, Elsevier, vol. 352(C), pages 90-107.
    8. Zhang, Tao & Lichstein, Jeremy W. & Birdsey, Richard A., 2014. "Spatial and temporal heterogeneity in the dynamics of eastern U.S. forests: Implications for developing broad-scale forest dynamics models," Ecological Modelling, Elsevier, vol. 279(C), pages 89-99.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langner, Alexandra & Irauschek, Florian & Perez, Susana & Pardos, Marta & Zlatanov, Tzvetan & Öhman, Karin & Nordström, Eva-Maria & Lexer, Manfred J., 2017. "Value-based ecosystem service trade-offs in multi-objective management in European mountain forests," Ecosystem Services, Elsevier, vol. 26(PA), pages 245-257.
    2. Matejicek, Lubos & Vavrova, Eva & Cudlin, Pavel, 2011. "Spatio-temporal modelling of ground vegetation development in mountain spruce forests," Ecological Modelling, Elsevier, vol. 222(14), pages 2584-2592.
    3. Irauschek, Florian & Barka, Ivan & Bugmann, Harald & Courbaud, Benoit & Elkin, Che & Hlásny, Tomáš & Klopcic, Matija & Mina, Marco & Rammer, Werner & Lexer, Manfred J, 2021. "Evaluating five forest models using multi-decadal inventory data from mountain forests," Ecological Modelling, Elsevier, vol. 445(C).
    4. Jianwei W. Zhang & William W. Oliver & Russell T. Graham & W. Keith Moser, 2020. "The Level-of-Growing-Stock (LOGS) study on thinning ponderosa pine forests in the US West: A long-term collaborative experiment in density management," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(10), pages 393-406.
    5. M. Didion & A. Kupferschmid & A. Wolf & H. Bugmann, 2011. "Ungulate herbivory modifies the effects of climate change on mountain forests," Climatic Change, Springer, vol. 109(3), pages 647-669, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:14:p:2570-2583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.