IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i7p1197-1209.html
   My bibliography  Save this article

Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain)

Author

Listed:
  • José Ramón González‐Olabarria
  • Blas Mola‐Yudego
  • Lluis Coll

Abstract

The present study analyzes the effects of different socioeconomic factors on the frequency of fire ignition occurrence, according to different original causes. The data include a set of documented ignition points in the region of Catalonia for the period 1995–2008. The analysis focused on the spatial aggregation patterns of the ignitions for each specific ignition cause. The point‐based data on ignitions were interpolated into municipality‐level information using kernel methods as the basis for defining five ignition density levels. Afterwards, the combination of socioeconomic factors influencing the ignition density levels of the municipalities was analyzed for each documented cause of ignition using a principal component analysis. The obtained results confirmed the idea that both the spatial aggregation patterns of fire ignitions and the factors defining their occurrence were specific for each of the causes of ignition. Intentional fires and those of unknown origin were found to have similar spatial aggregation patterns, and the presence of high ignition density areas was related to high population and high unemployment rates. Additionally, it was found that fires originated from forest work, agricultural activities, pasture burning, and lightning had a very specific behavior on their own, differing from the similarities found on the spatial aggregation of ignitions originated from smokers, electric lines, machinery, campfires, and those of intentional or unknown origin.

Suggested Citation

  • José Ramón González‐Olabarria & Blas Mola‐Yudego & Lluis Coll, 2015. "Different Factors for Different Causes: Analysis of the Spatial Aggregations of Fire Ignitions in Catalonia (Spain)," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1197-1209, July.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:7:p:1197-1209
    DOI: 10.1111/risa.12339
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12339
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roger Bivand & Albrecht Gebhardt, 2000. "Implementing functions for spatial statistical analysis using the language," Journal of Geographical Systems, Springer, vol. 2(3), pages 307-317, September.
    2. Amatulli, Giuseppe & Peréz-Cabello, Fernando & de la Riva, Juan, 2007. "Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty," Ecological Modelling, Elsevier, vol. 200(3), pages 321-333.
    3. Jeffrey P. Prestemon & David T. Butry, 2005. "Time to Burn: Modeling Wildland Arson as an Autoregressive Crime Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 756-770.
    4. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fermín Alcasena & Marcos Rodrigues & Pere Gelabert & Alan Ager & Michele Salis & Aitor Ameztegui & Teresa Cervera & Cristina Vega-García, 2021. "Fostering Carbon Credits to Finance Wildfire Risk Reduction Forest Management in Mediterranean Landscapes," Land, MDPI, vol. 10(10), pages 1-23, October.
    2. José Ramón Rodríguez‐Pérez & Celestino Ordóñez & Javier Roca‐Pardiñas & Daniel Vecín‐Arias & Fernando Castedo‐Dorado, 2020. "Evaluating Lightning‐Caused Fire Occurrence Using Spatial Generalized Additive Models: A Case Study in Central Spain," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1418-1437, July.
    3. Valentina Ferretti & Gilberto Montibeller, 2019. "An Integrated Framework for Environmental Multi‐Impact Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 257-273, January.
    4. Marcos Rodrigues & Fermín Alcasena & Pere Gelabert & Cristina Vega‐García, 2020. "Geospatial Modeling of Containment Probability for Escaped Wildfires in a Mediterranean Region," Risk Analysis, John Wiley & Sons, vol. 40(9), pages 1762-1779, September.
    5. Canepa, Alessandra & Drogo, Federico, 2021. "Wildfire crime, apprehension and social vulnerability in Italy," Forest Policy and Economics, Elsevier, vol. 122(C).
    6. Canepa,Alessandra & Drogo,Federico, 2019. "Wildfire Crime and Social Vulnerability in Italy: A Panel Investigation," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202005, University of Turin.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    2. Jaime de Diego & Antonio Rúa & Mercedes Fernández, 2021. "Vulnerability Variables and Their Effect on Wildfires in Galicia (Spain). A Panel Data Analysis," Land, MDPI, vol. 10(10), pages 1-17, September.
    3. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    4. Kuter, Semih & Usul, Nurunnisa & Kuter, Nazan, 2011. "Bandwidth determination for kernel density analysis of wildfire events at forest sub-district scale," Ecological Modelling, Elsevier, vol. 222(17), pages 3033-3040.
    5. M. N. M. Lieshout, 2020. "Infill Asymptotics and Bandwidth Selection for Kernel Estimators of Spatial Intensity Functions," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 995-1008, September.
    6. Roger Bivand, 2008. "Implementing Representations Of Space In Economic Geography," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 1-27, February.
    7. Antonio Páez, 2021. "Open spatial sciences: an introduction," Journal of Geographical Systems, Springer, vol. 23(4), pages 467-476, October.
    8. Yingqi Zhao & Donglin Zeng & Amy H. Herring & Amy Ising & Anna Waller & David Richardson & Michael R. Kosorok, 2011. "Detecting Disease Outbreaks Using Local Spatiotemporal Methods," Biometrics, The International Biometric Society, vol. 67(4), pages 1508-1517, December.
    9. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    10. Peng Hou & Xiaojian Yi & Haiping Dong, 2020. "A Spatial Statistic Based Risk Assessment Approach to Prioritize the Pipeline Inspection of the Pipeline Network," Energies, MDPI, vol. 13(3), pages 1-16, February.
    11. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    12. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    13. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    14. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    15. Roger S. Bivand, 2021. "Progress in the R ecosystem for representing and handling spatial data," Journal of Geographical Systems, Springer, vol. 23(4), pages 515-546, October.
    16. repec:rri:wpaper:201301 is not listed on IDEAS
    17. Wenyang Zhang & Qiwei Yao & Howell Tong & Nils Chr. Stenseth, 2003. "Smoothing for Spatiotemporal Models and Its Application to Modeling Muskrat-Mink Interaction," Biometrics, The International Biometric Society, vol. 59(4), pages 813-821, December.
    18. James Gaboardi, 2020. "Validating Abstract Representations of Spatial Population Data while considering Disclosure Avoidance," Working Papers 20-5, Center for Economic Studies, U.S. Census Bureau.
    19. Chen, Xuan & Goodwin, Barry K., 2013. "Spatio-Temporal Modeling of Lightning Fires on Forestland: A Compensation Scheme," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 151285, Agricultural and Applied Economics Association.
    20. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    21. Federico Camerlenghi & Claudio Macci & Elena Villa, 2021. "Asymptotic behavior of mean density estimators based on a single observation: the Boolean model case," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 1011-1035, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:7:p:1197-1209. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.