IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v204y2007i1p246-252.html
   My bibliography  Save this article

The evolutionary pressure from fishing on size at maturation of Baltic cod

Author

Listed:
  • Andersen, K.H.
  • Farnsworth, K.D.
  • Thygesen, U.H.
  • Beyer, J.E.

Abstract

Recent observations suggest fishing pressure is driving the evolution of smaller female maturation size in some fish stocks. We construct a general size-based theoretical framework to derive the rate and ultimate destination of this evolution based on life-history, community ecology and evolutionary theory. For Baltic cod (Gadus morhua), we find a maximum evolutionary rate of approximately −36 g/generation (−0.072 Haldanes) and optimum maturation size <250 g (mean≈50 g). Whilst this is consistent with many previous observations, it is substantially less than observed in rapidly declining cod stocks, suggesting additional evolutionary processes may affect them. Analysis of management remedies finds only an effective ban on fishing will halt the evolution. Unable to maximise fitness, the fish will remain under evolutionary stress for the foreseeable future.

Suggested Citation

  • Andersen, K.H. & Farnsworth, K.D. & Thygesen, U.H. & Beyer, J.E., 2007. "The evolutionary pressure from fishing on size at maturation of Baltic cod," Ecological Modelling, Elsevier, vol. 204(1), pages 246-252.
  • Handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:246-252
    DOI: 10.1016/j.ecolmodel.2007.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007000087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    2. Esben M. Olsen & Mikko Heino & George R. Lilly & M. Joanne Morgan & John Brattey & Bruno Ernande & Ulf Dieckmann, 2004. "Maturation trends indicative of rapid evolution preceded the collapse of northern cod," Nature, Nature, vol. 428(6986), pages 932-935, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cabral, Reniel B. & Aliño, Porfirio M. & Lim, May T., 2013. "A coupled stock-recruitment-age-structured model of the North Sea cod under the influence of depensation," Ecological Modelling, Elsevier, vol. 253(C), pages 1-8.
    2. Andersen, K.H. & Beyer, J.E. & Pedersen, M. & Andersen, N.G. & Gislason, H., 2008. "Life-history constraints on the success of the many small eggs reproductive strategy," Theoretical Population Biology, Elsevier, vol. 73(4), pages 490-497.
    3. Kuparinen, Anna & Björklund, Mats, 2011. "Theory put into practice: An R implementation of the infinite-dimensional model," Ecological Modelling, Elsevier, vol. 222(12), pages 2027-2030.
    4. dos Santos, R.V.R. & Martins, S.G.F. & Pompeu, P.S., 2012. "An individual-based model for evolutionary effects of selective fishing applied to Pseudoplatystoma corruscans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5112-5120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    2. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    3. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    4. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    5. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    6. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
    7. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    8. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    9. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    10. Josep Alós & Miquel Palmer & Robert Arlinghaus, 2012. "Consistent Selection towards Low Activity Phenotypes When Catchability Depends on Encounters among Human Predators and Fish," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    11. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    12. Dercole, Fabio & Prieu, Charlotte & Rinaldi, Sergio, 2010. "Technological change and fisheries sustainability: The point of view of Adaptive Dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 379-387.
    13. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    14. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    15. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    16. Carl‐Johan Dalgaard & Holger Strulik, 2016. "Physiology and Development: Why the West is Taller Than the Rest," Economic Journal, Royal Economic Society, vol. 126(598), pages 2292-2323, December.
    17. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    18. Tao, Yong & Lin, Li & Wang, Hanjie & Hou, Chen, 2023. "Superlinear growth and the fossil fuel energy sustainability dilemma: Evidence from six continents," Structural Change and Economic Dynamics, Elsevier, vol. 66(C), pages 39-51.
    19. Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
    20. Hendriks, A. Jan, 2007. "The power of size: A meta-analysis reveals consistency of allometric regressions," Ecological Modelling, Elsevier, vol. 205(1), pages 196-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:204:y:2007:i:1:p:246-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.