IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v200y2007i3p521-528.html
   My bibliography  Save this article

On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models

Author

Listed:
  • Wang, Guiming

Abstract

Nonlinear state-space models have been increasingly applied to study population dynamics and data assimilation in environmental sciences. State-space models can account for process error and measurement error simultaneously to correct for the bias in the estimates of system state and model parameters. However, few studies have compared the performance of different nonlinear state-space models for reconstructing the state of population dynamics from noisy time series. This study compared the performance of the extended Kalman filter (EKF), unscented Kalman filter (UKF) and Bayesian nonlinear state-space models (BNSSM) through simulations. Synthetic population time series were generated using the theta logistic model with known parameters, and normally distributed process and measurement errors were introduced using the Monte Carlo simulations. At higher levels of nonlinearity, the UKF and BNSSM had lower root mean square error (RMSE) than the EKF. The BNSSM performed reliably across all levels of nonlinearity, whereas increased levels of nonlinearity resulted in higher RMSE of the EKF. The Metropolis–Hastings algorithm within the Gibbs algorithm was used to fit the theta logistic model to synthetic time series to estimate model parameters. The estimated posterior distribution of the parameter θ indicated that the 95% credible intervals included the true values of θ (=0.5 and 1.5), but did not include 1.0 and 0.0. Future studies need to incorporate the adaptive Metropolis algorithm to estimate unknown model parameters for broad applications of Bayesian nonlinear state-space models in ecological studies.

Suggested Citation

  • Wang, Guiming, 2007. "On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models," Ecological Modelling, Elsevier, vol. 200(3), pages 521-528.
  • Handle: RePEc:eee:ecomod:v:200:y:2007:i:3:p:521-528
    DOI: 10.1016/j.ecolmodel.2006.09.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380006004133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2006.09.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnaud Doucet & Vladislav Tadić, 2003. "Parameter estimation in general state-space models using particle methods," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 409-422, June.
    2. Geweke, John & Tanizaki, Hisashi, 2001. "Bayesian estimation of state-space models using the Metropolis-Hastings algorithm within Gibbs sampling," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 151-170, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hefley, Trevor J. & Tyre, Andrew J. & Blankenship, Erin E., 2013. "Fitting population growth models in the presence of measurement and detection error," Ecological Modelling, Elsevier, vol. 263(C), pages 244-250.
    2. Barker, Daniel & Sibly, Richard M., 2008. "The effects of environmental perturbation and measurement error on estimates of the shape parameter in the theta-logistic model of population regulation," Ecological Modelling, Elsevier, vol. 219(1), pages 170-177.
    3. Gimenez, Olivier & Rossi, Vivien & Choquet, Rémi & Dehais, Camille & Doris, Blaise & Varella, Hubert & Vila, Jean-Pierre & Pradel, Roger, 2007. "State-space modelling of data on marked individuals," Ecological Modelling, Elsevier, vol. 206(3), pages 431-438.
    4. Mo, Xingguo & Chen, Jing M. & Ju, Weimin & Black, T. Andrew, 2008. "Optimization of ecosystem model parameters through assimilating eddy covariance flux data with an ensemble Kalman filter," Ecological Modelling, Elsevier, vol. 217(1), pages 157-173.
    5. Kristensen, Kasper & Nielsen, Anders & Berg, Casper W. & Skaug, Hans & Bell, Bradley M., 2016. "TMB: Automatic Differentiation and Laplace Approximation," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i05).
    6. Veyssiere, Luc Pierre, 2009. "A three essays dissertation on agricultural and environmental microeconomics," ISU General Staff Papers 200901010800001958, Iowa State University, Department of Economics.
    7. Solbu, Erik Blystad & Engen, Steinar & Diserud, Ola Håvard, 2015. "Guidelines when estimating temporal changes in density dependent populations," Ecological Modelling, Elsevier, vol. 313(C), pages 355-376.
    8. Pedersen, M.W. & Berg, C.W. & Thygesen, U.H. & Nielsen, A. & Madsen, H., 2011. "Estimation methods for nonlinear state-space models in ecology," Ecological Modelling, Elsevier, vol. 222(8), pages 1394-1400.
    9. Christophe Andrieu & Arnaud Doucet & Roman Holenstein, 2010. "Particle Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 269-342, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Liu & Ke Di & Hui Peng & Yu Liu, 2023. "A Tight Coupling Algorithm for Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS) Adaptive Integrated Navigation Based on Variational Bayesian," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Linnea Polgreen & Pedro Silos, 2008. "Capital-Skill Complementarity and Inequality: A Sensitivity Analysis," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(2), pages 302-313, April.
    3. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    4. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    5. Roncalli, Thierry & Weisang, Guillaume, 2011. "Tracking Problems, Hedge Fund Replication, and Alternative Beta," Journal of Financial Transformation, Capco Institute, vol. 31, pages 19-29.
    6. Delle Monache, Davide & Petrella, Ivan, 2019. "Efficient matrix approach for classical inference in state space models," Economics Letters, Elsevier, vol. 181(C), pages 22-27.
    7. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.
    8. Linardi, Fernando & Diks, Cees & van der Leij, Marco & Lazier, Iuri, 2020. "Dynamic interbank network analysis using latent space models," Journal of Economic Dynamics and Control, Elsevier, vol. 112(C).
    9. Fabio Canova & Fernando J. Pérez Forero, 2012. "Estimating overidentified, nonrecursive, time-varying coefficients structural VARs," Economics Working Papers 1321, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Christian Hotz‐Behofsits & Florian Huber & Thomas Otto Zörner, 2018. "Predicting crypto‐currencies using sparse non‐Gaussian state space models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(6), pages 627-640, September.
    11. Koenker, Roger & Yoon, Jungmo, 2009. "Parametric links for binary choice models: A Fisherian-Bayesian colloquy," Journal of Econometrics, Elsevier, vol. 152(2), pages 120-130, October.
    12. Gao, Rui & Li, Yaqiong & Lin, Lisha, 2019. "Bayesian statistical inference for European options with stock liquidity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 312-322.
    13. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    14. Helio Migon & Alexandra Schmidt & Romy Ravines & João Pereira, 2013. "An efficient sampling scheme for dynamic generalized models," Computational Statistics, Springer, vol. 28(5), pages 2267-2293, October.
    15. Na Xia & Qinan Zhi & Menghua He & Yunqing Hong & Huazheng Du, 2020. "A navigation satellite selection algorithm for optimized positioning based on Gibbs sampler," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
    16. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    17. Su, Zhenming & Peterman, Randall M., 2012. "Performance of a Bayesian state-space model of semelparous species for stock-recruitment data subject to measurement error," Ecological Modelling, Elsevier, vol. 224(1), pages 76-89.
    18. Manuel Gonzalez-Astudillo, 2013. "Monetary-fiscal policy interactions: interdependent policy rule coefficients," Finance and Economics Discussion Series 2013-58, Board of Governors of the Federal Reserve System (U.S.).
    19. Jimmy Olsson & Johan Westerborn Alenlöv, 2020. "Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 545-576, April.
    20. Hasegawa, Takanori & Niida, Atsushi & Mori, Tomoya & Shimamura, Teppei & Yamaguchi, Rui & Miyano, Satoru & Akutsu, Tatsuya & Imoto, Seiya, 2016. "A likelihood-free filtering method via approximate Bayesian computation in evaluating biological simulation models," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 63-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:200:y:2007:i:3:p:521-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.