IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12477-d1218714.html
   My bibliography  Save this article

A Tight Coupling Algorithm for Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS) Adaptive Integrated Navigation Based on Variational Bayesian

Author

Listed:
  • Jiaxin Liu

    (Chongqing Key Laboratory of Autonomous Navigation and Microsystems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Ke Di

    (Chongqing Key Laboratory of Autonomous Navigation and Microsystems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Hui Peng

    (Chongqing Key Laboratory of Autonomous Navigation and Microsystems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

  • Yu Liu

    (Chongqing Key Laboratory of Autonomous Navigation and Microsystems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
    Chongqing Engineering Research Center of Intelligent Sensing Technology and Microsystem, Chongqing University of Posts and Telecommunications, Chongqing 400065, China)

Abstract

Multi-source nonlinear noise exists in the process of multi-source navigation information fusion in long-endurance positioning systems in complex environments. In such engineering applications, the classical Kalman filter (KF) and the extended Kalman filter (EKF) have the phenomena of noise instability and parameter drift, which lead to the divergence of filtering results and reductions in accuracy over long periods of time. Aiming at the above problems, this paper proposes a fusion algorithm of the variational Bayesian (VB) and the cubature Kalman filter (CKF). Firstly, the system is modeled through nonlinear filtering, and the CKF error equation is established by taking the position difference and velocity difference between SINS and GPS as observation variables. Then, to address the problem of poor self-adaptation of the CKF algorithm, the variational Bayesian adaptive estimation method is introduced into the CKF algorithm, and a measurement noise variance estimation model is introduced to the process of time and measurement updates of the CKF algorithm to finally obtain the adaptive VB–CKF algorithm. The simulation results from the experimental platform show that the proposed fusion algorithm improves the combined SINS/GPS system by about 30% in terms of attitude angle accuracy and reduces speed and position estimation errors (RMSE) by about 45%. At the same time, comprehensive experiments on multiple types of sites show that compared with the CKF algorithm, the VB–CKF algorithm improves the positioning accuracy by 10% when the GPS signal is stable and improves the accuracy by about 38% when the GPS measurement noise changes dramatically in complex terrain, which effectively suppresses the accuracy divergence of the CKF algorithm and has high value for engineering applications.

Suggested Citation

  • Jiaxin Liu & Ke Di & Hui Peng & Yu Liu, 2023. "A Tight Coupling Algorithm for Strapdown Inertial Navigation System (SINS)/Global Positioning System (GPS) Adaptive Integrated Navigation Based on Variational Bayesian," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12477-:d:1218714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12477/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12477/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnaud Doucet & Vladislav Tadić, 2003. "Parameter estimation in general state-space models using particle methods," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(2), pages 409-422, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeongeun Kim & David S. Stoffer, 2008. "Fitting Stochastic Volatility Models in the Presence of Irregular Sampling via Particle Methods and the EM Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 811-833, September.
    2. Roncalli, Thierry & Weisang, Guillaume, 2011. "Tracking Problems, Hedge Fund Replication, and Alternative Beta," Journal of Financial Transformation, Capco Institute, vol. 31, pages 19-29.
    3. Giuliano De Rossi, 2010. "Maximum Likelihood Estimation of the Cox–Ingersoll–Ross Model Using Particle Filters," Computational Economics, Springer;Society for Computational Economics, vol. 36(1), pages 1-16, June.
    4. Ruiz-Cárdenas, Ramiro & Krainski, Elias T. & Rue, Håvard, 2012. "Direct fitting of dynamic models using integrated nested Laplace approximations — INLA," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1808-1828.
    5. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    6. Wang, Guiming, 2007. "On the latent state estimation of nonlinear population dynamics using Bayesian and non-Bayesian state-space models," Ecological Modelling, Elsevier, vol. 200(3), pages 521-528.
    7. Jimmy Olsson & Johan Westerborn Alenlöv, 2020. "Particle-based online estimation of tangent filters with application to parameter estimation in nonlinear state-space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 545-576, April.
    8. Pedersen, M.W. & Thygesen, U.H. & Madsen, H., 2011. "Nonlinear tracking in a diffusion process with a Bayesian filter and the finite element method," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 280-290, January.
    9. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12477-:d:1218714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.