IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v239y2024ics0165176524002453.html
   My bibliography  Save this article

Off-diagonal elements of projection matrices and dimension asymptotics

Author

Listed:
  • Anatolyev, Stanislav
  • Smirnov, Maksim

Abstract

We provide insights on asymptotic behavior of the off-diagonal elements of projection matrices in settings, where the dimension of underlying vectors grows with the sample size. Under designs favorable to application of the random matrix theory, the off-diagonal elements are asymptotically normal with a simple variance expression. We also discuss the robustness of the result to deviations of the design from the ideal setup.

Suggested Citation

  • Anatolyev, Stanislav & Smirnov, Maksim, 2024. "Off-diagonal elements of projection matrices and dimension asymptotics," Economics Letters, Elsevier, vol. 239(C).
  • Handle: RePEc:eee:ecolet:v:239:y:2024:i:c:s0165176524002453
    DOI: 10.1016/j.econlet.2024.111761
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176524002453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2024.111761?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    2. Paul A. Bekker & Jan van der Ploeg, 2005. "Instrumental variable estimation based on grouped data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(3), pages 239-267, August.
    3. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    4. Hasselt, Martijn van, 2010. "Many Instruments Asymptotic Approximations Under Nonnormal Error Distributions," Econometric Theory, Cambridge University Press, vol. 26(2), pages 633-645, April.
    5. Anatolyev, Stanislav & Yaskov, Pavel, 2017. "Asymptotics Of Diagonal Elements Of Projection Matrices Under Many Instruments/Regressors," Econometric Theory, Cambridge University Press, vol. 33(3), pages 717-738, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    2. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    3. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    4. Hyunseok Jung & Xiaodong Liu, 2023. "Testing for Peer Effects without Specifying the Network Structure," Papers 2306.09806, arXiv.org, revised Jul 2024.
    5. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    6. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    7. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org, revised Nov 2024.
    8. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.
    9. Richard, Patrick, 2019. "Residual bootstrap tests in linear models with many regressors," Journal of Econometrics, Elsevier, vol. 208(2), pages 367-394.
    10. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    11. Eric Gautier & Christiern Rose, 2022. "Fast, Robust Inference for Linear Instrumental Variables Models using Self-Normalized Moments," Papers 2211.02249, arXiv.org, revised Nov 2022.
    12. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    13. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    14. Sølvsten, Mikkel, 2020. "Robust estimation with many instruments," Journal of Econometrics, Elsevier, vol. 214(2), pages 495-512.
    15. Patrick Kline & Raffaele Saggio & Mikkel Sølvsten, 2020. "Leave‐Out Estimation of Variance Components," Econometrica, Econometric Society, vol. 88(5), pages 1859-1898, September.
    16. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Sep 2023.
    17. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
    18. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    19. Byunghoon Kang, 2018. "Higher Order Approximation of IV Estimators with Invalid Instruments," Working Papers 257105320, Lancaster University Management School, Economics Department.
    20. Boot, Tom, 2023. "Joint inference based on Stein-type averaging estimators in the linear regression model," Journal of Econometrics, Elsevier, vol. 235(2), pages 1542-1563.

    More about this item

    Keywords

    Projection matrix; Many instruments/regressors; Dimension asymptotics;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:239:y:2024:i:c:s0165176524002453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.