IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v185y2019ics0165176519303556.html
   My bibliography  Save this article

Information demand and cryptocurrency market activity

Author

Listed:
  • Katsiampa, Paraskevi
  • Moutsianas, Konstantinos
  • Urquhart, Andrew

Abstract

This paper studies the relationship between information demand measured by Google search volume index, price returns, and trading volume for five major cryptocurrencies. We find that past information demand flows significantly influence the volume of all cryptocurrencies except for Litecoin. Moreover, trading volumes are found to Granger cause the information demand flows of Bitcoin, Ripple, and Litecoin, while previous day’s returns significantly influence the information demand flows of all the altcoins.

Suggested Citation

  • Katsiampa, Paraskevi & Moutsianas, Konstantinos & Urquhart, Andrew, 2019. "Information demand and cryptocurrency market activity," Economics Letters, Elsevier, vol. 185(C).
  • Handle: RePEc:eee:ecolet:v:185:y:2019:i:c:s0165176519303556
    DOI: 10.1016/j.econlet.2019.108714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519303556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.108714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Shen, Dehua & Urquhart, Andrew & Wang, Pengfei, 2019. "Does twitter predict Bitcoin?," Economics Letters, Elsevier, vol. 174(C), pages 118-122.
    3. Pavel Ciaian & Miroslava Rajcaniova & d’Artis Kancs, 2016. "The economics of BitCoin price formation," Applied Economics, Taylor & Francis Journals, vol. 48(19), pages 1799-1815, April.
    4. Goddard, John & Kita, Arben & Wang, Qingwei, 2015. "Investor attention and FX market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 79-96.
    5. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    6. Vlastakis, Nikolaos & Markellos, Raphael N., 2012. "Information demand and stock market volatility," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1808-1821.
    7. Vozlyublennaia, Nadia, 2014. "Investor attention, index performance, and return predictability," Journal of Banking & Finance, Elsevier, vol. 41(C), pages 17-35.
    8. Chronopoulos, Dimitris K. & Papadimitriou, Fotios I. & Vlastakis, Nikolaos, 2018. "Information demand and stock return predictability," Journal of International Money and Finance, Elsevier, vol. 80(C), pages 59-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marmora, Paul, 2022. "Does monetary policy fuel bitcoin demand? Event-study evidence from emerging markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    2. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.
    3. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    4. Syed Riaz Mahmood Ali, 2022. "Herding in different states and terms: evidence from the cryptocurrency market," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 322-336, July.
    5. Aspris, Angelo & Foley, Sean & Svec, Jiri & Wang, Leqi, 2021. "Decentralized exchanges: The “wild west” of cryptocurrency trading," International Review of Financial Analysis, Elsevier, vol. 77(C).
    6. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    7. Yuzhi Cai & Thanaset Chevapatrakul & Danilo V. Mascia, 2021. "How is price explosivity triggered in the cryptocurrency markets?," Annals of Operations Research, Springer, vol. 307(1), pages 37-51, December.
    8. Kim, Myeong Jun & Canh, Nguyen Phuc & Park, Sung Y., 2021. "Causal relationship among cryptocurrencies: A conditional quantile approach," Finance Research Letters, Elsevier, vol. 42(C).
    9. Shen, Dehua & Tong, Zezheng & Goodell, John W., 2024. "Do online message boards convey cryptocurrency-specific information?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    10. Marmora, Paul, 2021. "Currency substitution in the shadow economy: International panel evidence using local Bitcoin trade volume," Economics Letters, Elsevier, vol. 205(C).
    11. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. María José Ayala & Nicolás Gonzálvez-Gallego & Rocío Arteaga-Sánchez, 2024. "Google search volume index and investor attention in stock market: a systematic review," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-29, December.
    2. Smales, L.A., 2021. "Investor attention and global market returns during the COVID-19 crisis," International Review of Financial Analysis, Elsevier, vol. 73(C).
    3. Marmora, Paul, 2022. "Does monetary policy fuel bitcoin demand? Event-study evidence from emerging markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 77(C).
    4. Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
    5. Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    6. Wei Zhang & Pengfei Wang, 2020. "Investor attention and the pricing of cryptocurrency market," Evolutionary and Institutional Economics Review, Springer, vol. 17(2), pages 445-468, July.
    7. Goodell, John W. & Kumar, Satish & Li, Xiao & Pattnaik, Debidutta & Sharma, Anuj, 2022. "Foundations and research clusters in investor attention: Evidence from bibliometric and topic modelling analysis," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 511-529.
    8. Suardi, Sandy & Rasel, Atiqur Rahman & Liu, Bin, 2022. "On the predictive power of tweet sentiments and attention on bitcoin," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 289-301.
    9. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    10. Gianna Figà-Talamanca & Marco Patacca, 2020. "Disentangling the relationship between Bitcoin and market attention measures," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 71-91, March.
    11. Al Guindy, Mohamed, 2021. "Cryptocurrency price volatility and investor attention," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 556-570.
    12. Basistha, Arabinda & Kurov, Alexander & Wolfe, Marketa Halova, 2019. "Volatility Forecasting: The Role of Internet Search Activity and Implied Volatility," MPRA Paper 111037, University Library of Munich, Germany.
    13. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    14. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    15. Geng, Yuedan & Ye, Qiang & Jin, Yu & Shi, Wen, 2022. "Crowd wisdom and internet searches: What happens when investors search for stocks?," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. Papadamou, Stephanos & Fassas, Athanasios P. & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2023. "Effects of the first wave of COVID-19 pandemic on implied stock market volatility: International evidence using a google trend measure," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    17. Gao, Yang & Wang, Yaojun & Wang, Chao & Liu, Chao, 2018. "Internet attention and information asymmetry: Evidence from Qihoo 360 search data on the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 802-811.
    18. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    19. Wang, Chen & Shen, Dehua & Li, Youwei, 2022. "Aggregate Investor Attention and Bitcoin Return: The Long Short-term Memory Networks Perspective," Finance Research Letters, Elsevier, vol. 49(C).
    20. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).

    More about this item

    Keywords

    Information demand flows; Bitcoin; Cryptocurrency; Volume; VAR;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:185:y:2019:i:c:s0165176519303556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.