IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v42y2021ics1544612320316937.html
   My bibliography  Save this article

Causal relationship among cryptocurrencies: A conditional quantile approach

Author

Listed:
  • Kim, Myeong Jun
  • Canh, Nguyen Phuc
  • Park, Sung Y.

Abstract

This study uses a Granger non-causality test in quantiles to extend the investigation of the causality among cryptocurrencies. The empirical results reveal that (i) no quantile uncorrelated cryptocurrency is found by the Granger non-causality test in quantiles. (ii) Statistically strong bi-directional causal relationships exist only between Ripple and other cryptocurrencies over the quantile level [0.05, 0.95]. (iii) There are strong causal relationships between cryptocurrencies’ returns over high quantile levels, such as, [0.6, 0.8] and [0.8, 0.95]. (iv) The largest cryptocurrencies, that is, Bitcoin (BTC) and Ethereum (ETH), have stronger causality to smaller ones in high quantiles. The results of the non-causality test suggest a significant causal relationship in the tail quantile, which makes it hard for investors to hedge the risk in the cryptocurrency market.

Suggested Citation

  • Kim, Myeong Jun & Canh, Nguyen Phuc & Park, Sung Y., 2021. "Causal relationship among cryptocurrencies: A conditional quantile approach," Finance Research Letters, Elsevier, vol. 42(C).
  • Handle: RePEc:eee:finlet:v:42:y:2021:i:c:s1544612320316937
    DOI: 10.1016/j.frl.2020.101879
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612320316937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2020.101879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toda, Hiro Y & Phillips, Peter C B, 1993. "Vector Autoregressions and Causality," Econometrica, Econometric Society, vol. 61(6), pages 1367-1393, November.
    2. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    3. Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
    4. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    5. Cheng, Hui-Pei & Yen, Kuang-Chieh, 2020. "The relationship between the economic policy uncertainty and the cryptocurrency market," Finance Research Letters, Elsevier, vol. 35(C).
    6. Canh, Nguyen Phuc & Wongchoti, Udomsak & Thanh, Su Dinh & Thong, Nguyen Trung, 2019. "Systematic risk in cryptocurrency market: Evidence from DCC-MGARCH model," Finance Research Letters, Elsevier, vol. 29(C), pages 90-100.
    7. Nguyen, Linh Hoang & Chevapatrakul, Thanaset & Yao, Kai, 2020. "Investigating tail-risk dependence in the cryptocurrency markets: A LASSO quantile regression approach," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 333-355.
    8. Baumöhl, Eduard, 2019. "Are cryptocurrencies connected to forex? A quantile cross-spectral approach," Finance Research Letters, Elsevier, vol. 29(C), pages 363-372.
    9. Kurka, Josef, 2019. "Do cryptocurrencies and traditional asset classes influence each other?," Finance Research Letters, Elsevier, vol. 31(C), pages 38-46.
    10. Aslanidis, Nektarios & Bariviera, Aurelio F. & Martínez-Ibañez, Oscar, 2019. "An analysis of cryptocurrencies conditional cross correlations," Finance Research Letters, Elsevier, vol. 31(C), pages 130-137.
    11. Katsiampa, Paraskevi & Moutsianas, Konstantinos & Urquhart, Andrew, 2019. "Information demand and cryptocurrency market activity," Economics Letters, Elsevier, vol. 185(C).
    12. Chuang, Chia-Chang & Kuan, Chung-Ming & Lin, Hsin-Yi, 2009. "Causality in quantiles and dynamic stock return-volume relations," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1351-1360, July.
    13. Bouri, Elie & Hussain Shahzad, Syed Jawad & Roubaud, David, 2020. "Cryptocurrencies as hedges and safe-havens for US equity sectors," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 294-307.
    14. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    15. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    16. Tu, Zhiyong & Xue, Changyong, 2019. "Effect of bifurcation on the interaction between Bitcoin and Litecoin," Finance Research Letters, Elsevier, vol. 31(C).
    17. Ballis, Antonis & Drakos, Konstantinos, 2020. "Testing for herding in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 33(C).
    18. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    19. Corbet, Shaen & Cumming, Douglas J. & Lucey, Brian M. & Peat, Maurice & Vigne, Samuel A., 2020. "The destabilising effects of cryptocurrency cybercriminality," Economics Letters, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timoth'ee Fabre & Ioane Muni Toke, 2024. "Neural Hawkes: Non-Parametric Estimation in High Dimension and Causality Analysis in Cryptocurrency Markets," Papers 2401.09361, arXiv.org, revised Jan 2024.
    2. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    3. Fang, Sheng & Cao, Guangxi & Egan, Paul, 2023. "Forecasting and backtesting systemic risk in the cryptocurrency market," Finance Research Letters, Elsevier, vol. 54(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Shboul, Mohammad & Assaf, Ata & Mokni, Khaled, 2022. "When bitcoin lost its position: Cryptocurrency uncertainty and the dynamic spillover among cryptocurrencies before and during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 83(C).
    2. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    3. Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Smales, L.A., 2022. "Investor attention in cryptocurrency markets," International Review of Financial Analysis, Elsevier, vol. 79(C).
    5. Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Kang, Sang Hoon, 2019. "Time-varying dynamic conditional correlation between stock and cryptocurrency markets using the copula-ADCC-EGARCH model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    7. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    8. Kavya Clanganthuruthil Sajeev & Mohd Afjal, 2022. "Contagion effect of cryptocurrency on the securities market: a study of Bitcoin volatility using diagonal BEKK and DCC GARCH models," SN Business & Economics, Springer, vol. 2(6), pages 1-21, June.
    9. Ahmed, Walid M.A., 2021. "How do Islamic equity markets respond to good and bad volatility of cryptocurrencies? The case of Bitcoin," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    10. Raza, Syed Ali & Ahmed, Maiyra & Aloui, Chaker, 2022. "On the asymmetrical connectedness between cryptocurrencies and foreign exchange markets: Evidence from the nonparametric quantile on quantile approach," Research in International Business and Finance, Elsevier, vol. 61(C).
    11. Celeste, Valerio & Corbet, Shaen & Gurdgiev, Constantin, 2020. "Fractal dynamics and wavelet analysis: Deep volatility and return properties of Bitcoin, Ethereum and Ripple," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 310-324.
    12. Nikolaos A. Kyriazis, 2021. "Investigating the diversifying or hedging nexus of cannabis cryptocurrencies with major digital currencies," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 845-861, December.
    13. Merediz-Solà, Ignasi & Bariviera, Aurelio F., 2019. "A bibliometric analysis of bitcoin scientific production," Research in International Business and Finance, Elsevier, vol. 50(C), pages 294-305.
    14. Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Cryptocurrencies vs. US dollar: Evidence from causality in quantiles analysis," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 238-252.
    15. Balcilar, Mehmet & Ozdemir, Huseyin & Agan, Busra, 2022. "Effects of COVID-19 on cryptocurrency and emerging market connectedness: Empirical evidence from quantile, frequency, and lasso networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    17. Donglian Ma & Pengxiang Zhai, 2021. "The Accuracy of the Tick Rule in the Bitcoin Market," SAGE Open, , vol. 11(2), pages 21582440211, May.
    18. Jiang, Yonghong & Lie, Jiayi & Wang, Jieru & Mu, Jinqi, 2021. "Revisiting the roles of cryptocurrencies in stock markets: A quantile coherency perspective," Economic Modelling, Elsevier, vol. 95(C), pages 21-34.
    19. Ding, Haoyuan & Kim, Hyung-Gun & Park, Sung Y., 2014. "Do net positions in the futures market cause spot prices of crude oil?," Economic Modelling, Elsevier, vol. 41(C), pages 177-190.
    20. Yousaf, Imran & Pham, Linh & Goodell, John W., 2023. "Interconnectedness between healthcare tokens and healthcare stocks: Evidence from a quantile VAR approach," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 271-283.

    More about this item

    Keywords

    Cryptocurrency; Quantile regression; Quantile non-causality test; Robust non-causality;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:42:y:2021:i:c:s1544612320316937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.