IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v181y2019icp160-163.html
   My bibliography  Save this article

Modelling systems with a mixture of I(d) and I(0) variables using the fractionally co-integrated VAR model

Author

Listed:
  • Yao, Xingzhi
  • Izzeldin, Marwan
  • Li, Zhenxiong

Abstract

We propose a filtration technique for making inference in systems with I(0) and I(d) variables using the fractionally co-integrated vector autoregressive (FCVAR) model with long memory in the co-integrating residuals. Superior predictions for the I(0) variable are demonstrated using simulations.

Suggested Citation

  • Yao, Xingzhi & Izzeldin, Marwan & Li, Zhenxiong, 2019. "Modelling systems with a mixture of I(d) and I(0) variables using the fractionally co-integrated VAR model," Economics Letters, Elsevier, vol. 181(C), pages 160-163.
  • Handle: RePEc:eee:ecolet:v:181:y:2019:i:c:p:160-163
    DOI: 10.1016/j.econlet.2019.05.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176519301909
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2019.05.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Søren Johansen & Morten Ørregaard Nielsen, 2012. "Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model," Econometrica, Econometric Society, vol. 80(6), pages 2667-2732, November.
    2. Søren Johansen & Morten Ørregaard Nielsen, 2019. "Nonstationary Cointegration in the Fractionally Cointegrated VAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(4), pages 519-543, July.
    3. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2018. "Downside risk and stock returns in the G7 countries: An empirical analysis of their long-run and short-run dynamics," Journal of Banking & Finance, Elsevier, vol. 93(C), pages 21-32.
    4. Bollerslev, Tim & Osterrieder, Daniela & Sizova, Natalia & Tauchen, George, 2013. "Risk and return: Long-run relations, fractional cointegration, and return predictability," Journal of Financial Economics, Elsevier, vol. 108(2), pages 409-424.
    5. Johansen, SØren, 2008. "A Representation Theory For A Class Of Vector Autoregressive Models For Fractional Processes," Econometric Theory, Cambridge University Press, vol. 24(3), pages 651-676, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    2. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," Discussion Papers 19/01, University of Nottingham, Granger Centre for Time Series Econometrics.
    3. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je & Gau, Yin-Feng, 2022. "Risk-return trade-off in the Australian Securities Exchange: Accounting for overnight effects, realized higher moments, long-run relations, and fractional cointegration," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 384-401.
    4. Federico Carlini & Paolo Santucci de Magistris, 2019. "Resuscitating the co-fractional model of Granger (1986)," CREATES Research Papers 2019-02, Department of Economics and Business Economics, Aarhus University.
    5. Alia Afzal & Philipp Sibbertsen, 2021. "Modeling fractional cointegration between high and low stock prices in Asian countries," Empirical Economics, Springer, vol. 60(2), pages 661-682, February.
    6. Søren Johansen & Morten Ørregaard Nielsen, 2018. "Testing the CVAR in the Fractional CVAR Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 836-849, November.
    7. repec:hum:wpaper:sfb649dp2016-001 is not listed on IDEAS
    8. Xu, Ke & Chen, Yu-Lun & Yang, J. Jimmy, 2023. "Market uncertainty, persistent arbitrage-free violation, and price discovery in RMB market," International Review of Financial Analysis, Elsevier, vol. 90(C).
    9. Quineche Ricardo, 2021. "Consumption, Aggregate Wealth and Expected Stock Returns: An FCVAR Approach," Journal of Time Series Econometrics, De Gruyter, vol. 13(1), pages 21-42, January.
    10. Gagnon, Marie-Hélène & Power, Gabriel J. & Toupin, Dominique, 2016. "International stock market cointegration under the risk-neutral measure," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 243-255.
    11. Ataei, Masoud & Chen, Shengyuan & Yang, Zijiang & Peyghami, M. Reza, 2021. "Theory and applications of financial chaos index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    12. Ke Xu & Yu‐Lun Chen & Bo Liu & Jian Chen, 2024. "Price discovery and long‐memory property: Simulation and empirical evidence from the bitcoin market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 605-618, April.
    13. Yan, Meng & Chen, Jian & Song, Victor & Xu, Ke, 2022. "Trade friction and price discovery in the USD–CAD spot and forward markets," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    14. Chen, Cathy Yi-Hsuan & Chiang, Thomas C. & Härdle, Wolfgang Karl, 2016. "Downside risk and stock returns: An empirical analysis of the long-run and short-run dynamics from the G-7 Countries," SFB 649 Discussion Papers 2016-001, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Pérez-Rodríguez, Jorge V. & Andrada-Félix, Julián & Rachinger, Heiko, 2021. "Testing the forward volatility unbiasedness hypothesis in exchange rates under long-range dependence," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    16. Daniela Osterrieder & Daniel Ventosa-Santaulària & J. Eduardo Vera-Valdés, 2015. "Unbalanced Regressions and the Predictive Equation," CREATES Research Papers 2015-09, Department of Economics and Business Economics, Aarhus University.
    17. Søren Johansen & Morten Ørregaard Nielsen, 2012. "The role of initial values in nonstationary fractional time series models," Discussion Papers 12-18, University of Copenhagen. Department of Economics.
    18. Chen, Cathy Yi-Hsuan & Fengler, Matthias R. & Härdle, Wolfgang Karl & Liu, Yanchu, 2022. "Media-expressed tone, option characteristics, and stock return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    19. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    20. Stoupos, Nikolaos & Kiohos, Apostolos, 2022. "Euro area stock markets integration: Empirical evidence after the end of 2010 debt crisis," Finance Research Letters, Elsevier, vol. 46(PB).
    21. Yuliya Lovcha & Alejandro Perez-Laborda, 2017. "Structural shocks and dynamic elasticities in a long memory model of the US gasoline retail market," Empirical Economics, Springer, vol. 53(2), pages 405-422, September.

    More about this item

    Keywords

    Long memory; Fractional co-integration; Model predictability;
    All these keywords.

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:181:y:2019:i:c:p:160-163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.