IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v156y2017icp68-73.html
   My bibliography  Save this article

A Bayesian analysis of binary misclassification

Author

Listed:
  • Bollinger, Christopher R.
  • van Hasselt, Martijn

Abstract

We consider Bayesian inference about the mean of a binary variable that is subject to misclassification error. If the error probabilities are not known, or cannot be estimated, the parameter is only partially identified. For several reasonable and intuitive prior distributions of the misclassification probabilities, we derive new analytical expressions for the posterior distribution. Our results circumvent the need for Markov chain Monte Carlo simulation. The priors we use lead to regions in the identified set that are a posteriori more likely than others.

Suggested Citation

  • Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "A Bayesian analysis of binary misclassification," Economics Letters, Elsevier, vol. 156(C), pages 68-73.
  • Handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:68-73
    DOI: 10.1016/j.econlet.2017.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517301519
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    2. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    3. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    4. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    5. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    6. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    7. Anil Gaba & Robert L. Winkler, 1992. "Implications of Errors in Survey Data: A Bayesian Model," Management Science, INFORMS, vol. 38(7), pages 913-925, July.
    8. E. Rahme & L. Joseph & T. W. Gyorkos, 2000. "Bayesian sample size determination for estimating binomial parameters from data subject to misclassification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 119-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Yuan & Simoni, Anna, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," MPRA Paper 43262, University Library of Munich, Germany.
    2. Toru Kitagawa, 2011. "Inference and decision for set identified parameters using posterior lower and upper probabilities," CeMMAP working papers CWP16/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. James Marton & Stephen A. Woodbury, 2013. "Retiree Health Benefits as Deferred Compensation," Public Finance Review, , vol. 41(1), pages 64-91, January.
    4. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    2. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "Bayesian moment-based inference in a regression model with misclassification error," Journal of Econometrics, Elsevier, vol. 200(2), pages 282-294.
    3. Erich Battistin & Barbara Sianesi, 2006. "Misreported schooling and returns to education: evidence from the UK," CeMMAP working papers CWP07/06, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Brent Kreider & Richard J. Manski & John Moeller & John Pepper, 2015. "The Effect of Dental Insurance on the Use of Dental Care for Older Adults: A Partial Identification Analysis," Health Economics, John Wiley & Sons, Ltd., vol. 24(7), pages 840-858, July.
    5. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    6. Craig Gundersen & Brent Kreider, 2008. "Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Nonclassical Measurement Error?," Journal of Human Resources, University of Wisconsin Press, vol. 43(2), pages 352-382.
    7. Brent Kreider & John V. Pepper & Manan Roy, 2016. "Identifying the Effects of WIC on Food Insecurity Among Infants and Children," Southern Economic Journal, John Wiley & Sons, vol. 82(4), pages 1106-1122, April.
    8. Raffaella Giacomini & Toru Kitagawa, 2021. "Robust Bayesian Inference for Set‐Identified Models," Econometrica, Econometric Society, vol. 89(4), pages 1519-1556, July.
    9. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    10. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    11. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Papers 2011.07276, arXiv.org.
    12. Gundersen, Craig & Kreider, Brent & Pepper, John, 2012. "The impact of the National School Lunch Program on child health: A nonparametric bounds analysis," Journal of Econometrics, Elsevier, vol. 166(1), pages 79-91.
    13. Yuan Liao & Anna Simoni, 2016. "Bayesian Inference for Partially Identified Convex Models: Is it Valid for Frequentist Inference?," Departmental Working Papers 201607, Rutgers University, Department of Economics.
    14. Arthur Lewbel, 2007. "Estimation of Average Treatment Effects with Misclassification," Econometrica, Econometric Society, vol. 75(2), pages 537-551, March.
    15. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    16. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    17. Francesca Molinari, 2020. "Microeconometrics with Partial Identification," Papers 2004.11751, arXiv.org.
    18. Battistin, Erich & De Nadai, Michele & Vuri, Daniela, 2017. "Counting rotten apples: Student achievement and score manipulation in Italian elementary Schools," Journal of Econometrics, Elsevier, vol. 200(2), pages 344-362.
    19. Brent Kreider & John V. Pepper, 2011. "Identification of Expected Outcomes in a Data Error Mixing Model With Multiplicative Mean Independence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 49-60, January.
    20. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.

    More about this item

    Keywords

    Bayesian inference; Partial identification; Misclassification;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:68-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.