IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v200y2017i2p282-294.html
   My bibliography  Save this article

Bayesian moment-based inference in a regression model with misclassification error

Author

Listed:
  • Bollinger, Christopher R.
  • van Hasselt, Martijn

Abstract

We present a Bayesian analysis of a regression model with a binary covariate that may have classification (measurement) error. Prior research demonstrates that the regression coefficient is only partially identified. We take a Bayesian approach which adds assumptions in the form of priors on the unknown misclassification probabilities. The approach is intermediate between the frequentist bounds of previous literature and strong assumptions which achieve point identification, and thus preferable in many settings. We present two simple algorithms to sample from the posterior distribution when the likelihood function is not fully parametric but only satisfies a set of moment restrictions. We focus on how varying amounts of information contained in a prior distribution on the misclassification probabilities change the posterior of the parameters of interest. While the priors add information to the model, they do not necessarily tighten the identified set. However, the information is sufficient to tighten Bayesian inferences. We also consider the case where the mismeasured binary regressor is endogenous. We illustrate the use of our Bayesian approach in a simulated data set and an empirical application investigating the association between narcotic pain reliever use and earnings.

Suggested Citation

  • Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "Bayesian moment-based inference in a regression model with misclassification error," Journal of Econometrics, Elsevier, vol. 200(2), pages 282-294.
  • Handle: RePEc:eee:econom:v:200:y:2017:i:2:p:282-294
    DOI: 10.1016/j.jeconom.2017.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407617300970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2017.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aigner, Dennis J., 1973. "Regression with a binary independent variable subject to errors of observation," Journal of Econometrics, Elsevier, vol. 1(1), pages 49-59, March.
    2. Kreider, Brent & Pepper, John V., 2007. "Disability and Employment: Reevaluating the Evidence in Light of Reporting Errors," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 432-441, June.
    3. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    4. Bound, John & Brown, Charles & Mathiowetz, Nancy, 2001. "Measurement error in survey data," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 59, pages 3705-3843, Elsevier.
    5. Chen, Xiaohong & Hu, Yingyao & Lewbel, Arthur, 2008. "A note on the closed-form identification of regression models with a mismeasured binary regressor," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1473-1479, September.
    6. Freeman, Richard B, 1984. "Longitudinal Analyses of the Effects of Trade Unions," Journal of Labor Economics, University of Chicago Press, vol. 2(1), pages 1-26, January.
    7. Chamberlain, Gary & Imbens, Guido W, 2003. "Nonparametric Applications of Bayesian Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 12-18, January.
    8. Frazis, Harley & Loewenstein, Mark A., 2003. "Estimating linear regressions with mismeasured, possibly endogenous, binary explanatory variables," Journal of Econometrics, Elsevier, vol. 117(1), pages 151-178, November.
    9. Yingyao Hu & Susanne M. Schennach, 2008. "Instrumental Variable Treatment of Nonclassical Measurement Error Models," Econometrica, Econometric Society, vol. 76(1), pages 195-216, January.
    10. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    11. Shiu, Ji-Liang, 2016. "Identification and estimation of endogenous selection models in the presence of misclassification errors," Economic Modelling, Elsevier, vol. 52(PB), pages 507-518.
    12. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    13. Bollinger, Christopher R., 1996. "Bounding mean regressions when a binary regressor is mismeasured," Journal of Econometrics, Elsevier, vol. 73(2), pages 387-399, August.
    14. Brent Kreider & John V. Pepper & Craig Gundersen & Dean Jolliffe, 2012. "Identifying the Effects of SNAP (Food Stamps) on Child Health Outcomes When Participation Is Endogenous and Misreported," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 958-975, September.
    15. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    16. Hu, Yingyao, 2008. "Identification and estimation of nonlinear models with misclassification error using instrumental variables: A general solution," Journal of Econometrics, Elsevier, vol. 144(1), pages 27-61, May.
    17. Hu, Yingyao & Shiu, Ji-Liang & Woutersen, Tiemen, 2016. "Identification in nonseparable models with measurement errors and endogeneity," Economics Letters, Elsevier, vol. 144(C), pages 33-36.
    18. van Hasselt, Martijn & Bollinger, Christopher R., 2012. "Binary misclassification and identification in regression models," Economics Letters, Elsevier, vol. 115(1), pages 81-84.
    19. Francis DiTraglia & Camilo García-Jimeno, 2016. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," NBER Working Papers 22621, National Bureau of Economic Research, Inc.
    20. Susanne M. Schennach, 2005. "Bayesian exponentially tilted empirical likelihood," Biometrika, Biometrika Trust, vol. 92(1), pages 31-46, March.
    21. Poirier, Dale J., 1998. "Revising Beliefs In Nonidentified Models," Econometric Theory, Cambridge University Press, vol. 14(4), pages 483-509, August.
    22. Card, David, 1996. "The Effect of Unions on the Structure of Wages: A Longitudinal Analysis," Econometrica, Econometric Society, vol. 64(4), pages 957-979, July.
    23. Hyungsik Roger Moon & Frank Schorfheide, 2012. "Bayesian and Frequentist Inference in Partially Identified Models," Econometrica, Econometric Society, vol. 80(2), pages 755-782, March.
    24. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    25. Klepper, Steven, 1988. "Regressor diagnostics for the classical errors-in-variables model," Journal of Econometrics, Elsevier, vol. 37(2), pages 225-250, February.
    26. Erickson, Timothy, 1989. "Proper Posteriors from Improper Priors for an Unidentified Errors-in-Variables Model," Econometrica, Econometric Society, vol. 57(6), pages 1299-1316, November.
    27. Yingyao Hu & Ji‐Liang Shiu & Tiemen Woutersen, 2015. "Identification and estimation of single‐index models with measurement error and endogeneity," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 347-362, October.
    28. Klepper, Steven, 1988. "Bounding the effects of measurement error in regressions involving dichotomous variables," Journal of Econometrics, Elsevier, vol. 37(3), pages 343-359, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    2. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "Identifying the effect of a mis-classified, binary, endogenous regressor," Papers 2011.07272, arXiv.org.
    3. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    4. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    5. Augustine Denteh & D'esir'e K'edagni, 2022. "Misclassification in Difference-in-differences Models," Papers 2207.11890, arXiv.org, revised Jul 2022.
    6. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    7. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Papers 2011.07276, arXiv.org.
    8. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    9. Francis DiTraglia & Camilo García-Jimeno, 2016. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," NBER Working Papers 22621, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "Identifying the effect of a mis-classified, binary, endogenous regressor," Papers 2011.07272, arXiv.org.
    2. DiTraglia, Francis J. & García-Jimeno, Camilo, 2019. "Identifying the effect of a mis-classified, binary, endogenous regressor," Journal of Econometrics, Elsevier, vol. 209(2), pages 376-390.
    3. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Third Version," PIER Working Paper Archive 15-040, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 24 Nov 2015.
    4. Francis J. DiTraglia & Camilo García-Jimeno, 2017. "Mis-classified, Binary, Endogenous Regressors: Identification and Inference," NBER Working Papers 23814, National Bureau of Economic Research, Inc.
    5. Francis J. DiTraglia & Camilo Garcia-Jimeno, 2020. "A Framework for Eliciting, Incorporating, and Disciplining Identification Beliefs in Linear Models," Papers 2011.07276, arXiv.org.
    6. Nguimkeu, Pierre & Denteh, Augustine & Tchernis, Rusty, 2019. "On the estimation of treatment effects with endogenous misreporting," Journal of Econometrics, Elsevier, vol. 208(2), pages 487-506.
    7. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    8. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    9. Molinari, Francesca, 2008. "Partial identification of probability distributions with misclassified data," Journal of Econometrics, Elsevier, vol. 144(1), pages 81-117, May.
    10. Steven J. Haider & Melvin Stephens Jr., 2020. "Correcting for Misclassified Binary Regressors Using Instrumental Variables," NBER Working Papers 27797, National Bureau of Economic Research, Inc.
    11. Denni Tommasi & Arthur Lewbel & Rossella Calvi, 2017. "LATE with Mismeasured or Misspecified Treatment: An application to Women's Empowerment in India," Working Papers ECARES ECARES 2017-27, ULB -- Universite Libre de Bruxelles.
    12. Francis DiTraglia & Camilo Garcia-Jimeno, 2015. "On Mis-measured Binary Regressors: New Results And Some Comments on the Literature, Second Version," PIER Working Paper Archive 15-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 11 Nov 2015.
    13. Akanksha Negi & Digvijay Singh Negi, 2022. "Difference-in-Differences with a Misclassified Treatment," Papers 2208.02412, arXiv.org.
    14. Adele Bergin, 2013. "Job Changes and Wage Changes: Estimation with Measurement Error in a Binary Variable," Economics Department Working Paper Series n240-13.pdf, Department of Economics, National University of Ireland - Maynooth.
    15. Brachet, Tanguy, 2008. "Maternal Smoking, Misclassification, and Infant Health," MPRA Paper 21466, University Library of Munich, Germany.
    16. Takahide Yanagi, 2019. "Inference on local average treatment effects for misclassified treatment," Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 938-960, September.
    17. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    18. Christopher R. Bollinger, 2001. "Response Error and the Union Wage Differential," Southern Economic Journal, John Wiley & Sons, vol. 68(1), pages 60-76, July.
    19. Brent Kreider & Richard J. Manski & John Moeller & John Pepper, 2015. "The Effect of Dental Insurance on the Use of Dental Care for Older Adults: A Partial Identification Analysis," Health Economics, John Wiley & Sons, Ltd., vol. 24(7), pages 840-858, July.
    20. Acerenza, Santiago & Ban, Kyunghoon & Kedagni, Desire, 2021. "Marginal Treatment Effects with Misclassified Treatment," ISU General Staff Papers 202106180700001132, Iowa State University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:200:y:2017:i:2:p:282-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.