IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v49y2000i1p119-128.html
   My bibliography  Save this article

Bayesian sample size determination for estimating binomial parameters from data subject to misclassification

Author

Listed:
  • E. Rahme
  • L. Joseph
  • T. W. Gyorkos

Abstract

We investigate the sample size problem when a binomial parameter is to be estimated, but some degree of misclassification is possible. The problem is especially challenging when the degree to which misclassification occurs is not exactly known. Motivated by a Canadian survey of the prevalence of toxoplasmosis infection in pregnant women, we examine the situation where it is desired that a marginal posterior credible interval for the prevalence of width w has coverage 1−α, using a Bayesian sample size criterion. The degree to which the misclassification probabilities are known a priori can have a very large effect on sample size requirements, and in some cases achieving a coverage of 1−α is impossible, even with an infinite sample size. Therefore, investigators must carefully evaluate the degree to which misclassification can occur when estimating sample size requirements.

Suggested Citation

  • E. Rahme & L. Joseph & T. W. Gyorkos, 2000. "Bayesian sample size determination for estimating binomial parameters from data subject to misclassification," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(1), pages 119-128.
  • Handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:119-128
    DOI: 10.1111/1467-9876.00182
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9876.00182
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9876.00182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martijn van Hasselt & Christopher R. Bollinger & Jeremy W. Bray, 2022. "A Bayesian approach to account for misclassification in prevalence and trend estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 351-367, March.
    2. Stamey, James & Gerlach, Richard, 2007. "Bayesian sample size determination for case-control studies with misclassification," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2982-2992, March.
    3. Sander Greenland, 2005. "Multiple‐bias modelling for analysis of observational data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(2), pages 267-306, March.
    4. Wesley O. Johnson & Chun-Lung Su & Ian A. Gardner & Ronald Christensen, 2004. "Sample Size Calculations for Surveys to Substantiate Freedom of Populations from Infectious Agents," Biometrics, The International Biometric Society, vol. 60(1), pages 165-171, March.
    5. Singh, Saroja Kumar & Acharya, Sarat Kumar & Cruz, Frederico R.B. & Quinino, Roberto C., 2021. "Bayesian sample size determination in a single-server deterministic queueing system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 17-29.
    6. Paul Gustafson, 2006. "Sample size implications when biases are modelled rather than ignored," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 865-881, October.
    7. Nandini Dendukuri & Elham Rahme & Patrick Bélisle & Lawrence Joseph, 2004. "Bayesian Sample Size Determination for Prevalence and Diagnostic Test Studies in the Absence of a Gold Standard Test," Biometrics, The International Biometric Society, vol. 60(2), pages 388-397, June.
    8. Boris G. Zaslavsky, 2013. "Bayesian Hypothesis Testing in Two-Arm Trials with Dichotomous Outcomes," Biometrics, The International Biometric Society, vol. 69(1), pages 157-163, March.
    9. Paul Gustafson & Nhu D. Le & Refik Saskin, 2001. "Case–Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities," Biometrics, The International Biometric Society, vol. 57(2), pages 598-609, June.
    10. Bollinger, Christopher R. & van Hasselt, Martijn, 2017. "A Bayesian analysis of binary misclassification," Economics Letters, Elsevier, vol. 156(C), pages 68-73.
    11. T. Pham-Gia & N. Turkhan, 2005. "Bayesian decision criteria in the presence of noises under quadratic and absolute value loss functions," Statistical Papers, Springer, vol. 46(2), pages 247-266, April.
    12. Martin Ladouceur & Elham Rahme & Christian A. Pineau & Lawrence Joseph, 2007. "Robustness of Prevalence Estimates Derived from Misclassified Data from Administrative Databases," Biometrics, The International Biometric Society, vol. 63(1), pages 272-279, March.
    13. Zhuoyu Wang & Nandini Dendukuri & Madhukar Pai & Lawrence Joseph, 2017. "Taking Costs and Diagnostic Test Accuracy into Account When Designing Prevalence Studies: An Application to Childhood Tuberculosis Prevalence," Medical Decision Making, , vol. 37(8), pages 922-929, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:49:y:2000:i:1:p:119-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.