IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v156y2017icp1-6.html
   My bibliography  Save this article

On weak identification in structural VARMA models

Author

Listed:
  • Yao, Wenying
  • Kam, Timothy
  • Vahid, Farshid

Abstract

We simulate synthetic data from known data generating processes (DGPs) that arise from economic theory, and compare the performance of fitted VAR and VARMA models in estimating the true impulse responses to structural shocks. We show that while the VARMA structures implied by these DGPs are theoretically identified and lead to precise estimates of impulse responses given enough data, their parameters are close to the non-identified ridge in the parameter space, and that makes precise estimation of the impulse responses in small samples typical of macroeconomic data improbable. As a result, VARMA models barely show any advantage over VARs in characterizing the known DGPs in small samples. This is a refinement of the conjecture that near non-stationarity, near non-invertibility or weak identification could be possible reasons for the failure of structural VARMA models in providing good estimates of theoretical impulse responses of particular DSGE models.

Suggested Citation

  • Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2017. "On weak identification in structural VARMA models," Economics Letters, Elsevier, vol. 156(C), pages 1-6.
  • Handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:1-6
    DOI: 10.1016/j.econlet.2017.03.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176517301374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2017.03.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blanchard, Olivier Jean & Quah, Danny, 1989. "The Dynamic Effects of Aggregate Demand and Supply Disturbances," American Economic Review, American Economic Association, vol. 79(4), pages 655-673, September.
    2. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    3. Christopher J. Erceg & Luca Guerrieri & Christopher Gust, 2005. "Can Long-Run Restrictions Identify Technology Shocks?," Journal of the European Economic Association, MIT Press, vol. 3(6), pages 1237-1278, December.
    4. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    5. Hansen, Gary D., 1985. "Indivisible labor and the business cycle," Journal of Monetary Economics, Elsevier, vol. 16(3), pages 309-327, November.
    6. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    7. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    8. Lutz Kilian, 2013. "Structural vector autoregressions," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 22, pages 515-554, Edward Elgar Publishing.
    9. Bagliano, Fabio C. & Favero, Carlo A., 1998. "Measuring monetary policy with VAR models: An evaluation," European Economic Review, Elsevier, vol. 42(6), pages 1069-1112, June.
    10. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    11. King, Robert G. & Plosser, Charles I. & Rebelo, Sergio T., 1988. "Production, growth and business cycles : II. New directions," Journal of Monetary Economics, Elsevier, vol. 21(2-3), pages 309-341.
    12. Pagan, A.R. & Pesaran, M. Hashem, 2008. "Econometric analysis of structural systems with permanent and transitory shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3376-3395, October.
    13. Lawrence J. Christiano & Martin Eichenbaum & Robert Vigfusson, 2007. "Assessing Structural VARs," NBER Chapters, in: NBER Macroeconomics Annual 2006, Volume 21, pages 1-106, National Bureau of Economic Research, Inc.
    14. George Athanasopoulos & Farshid Vahid, 2008. "A complete VARMA modelling methodology based on scalar components," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 533-554, May.
    15. Cogley, Timothy & Nason, James M., 1993. "Impulse dynamics and propagation mechanisms in a real business cycle model," Economics Letters, Elsevier, vol. 43(1), pages 77-81.
    16. Cooley, Thomas F. & Dwyer, Mark, 1998. "Business cycle analysis without much theory A look at structural VARs," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 57-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Funovits, Bernd, 2024. "Identifiability and estimation of possibly non-invertible SVARMA Models: The normalised canonical WHF parametrisation," Journal of Econometrics, Elsevier, vol. 241(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Wenying & Kam, Timothy & Vahid, Farshid, 2014. "VAR(MA), what is it good for? more bad news for reduced-form estimation and inference," Working Papers 2014-14, University of Tasmania, Tasmanian School of Business and Economics.
    2. Mertens, Elmar, 2012. "Are spectral estimators useful for long-run restrictions in SVARs?," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1831-1844.
    3. Kascha, Christian & Mertens, Karel, 2009. "Business cycle analysis and VARMA models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(2), pages 267-282, February.
    4. Chari, V.V. & Kehoe, Patrick J. & McGrattan, Ellen R., 2008. "Are structural VARs with long-run restrictions useful in developing business cycle theory?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1337-1352, November.
    5. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    6. Laura Bisio & Andrea Faccini, 2010. "Does Cointegration Matter? An Analysis in a RBC Perspective," Working Papers in Public Economics 133, Department of Economics and Law, Sapienza University of Roma.
    7. D.S. Poskitt & Wenying Yao, 2012. "VAR Modeling and Business Cycle Analysis: A Taxonomy of Errors," Monash Econometrics and Business Statistics Working Papers 11/12, Monash University, Department of Econometrics and Business Statistics.
    8. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    9. Poskitt, D.S., 2016. "Vector autoregressive moving average identification for macroeconomic modeling: A new methodology," Journal of Econometrics, Elsevier, vol. 192(2), pages 468-484.
    10. Charles, Amélie & Darné, Olivier & Tripier, Fabien, 2015. "Are Unit Root Tests Useful In The Debate Over The (Non)Stationarity Of Hours Worked?," Macroeconomic Dynamics, Cambridge University Press, vol. 19(1), pages 167-188, January.
    11. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    12. Andrei Polbin & Sergey Drobyshevsky, 2014. "Developing a Dynamic Stochastic Model of General Equilibrium for the Russian Economy," Research Paper Series, Gaidar Institute for Economic Policy, issue 166P, pages 156-156.
    13. Patrick Fève & Alain Guay, 2010. "Identification of Technology Shocks in Structural Vars," Economic Journal, Royal Economic Society, vol. 120(549), pages 1284-1318, December.
    14. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    15. Wiriyawit Varang & Wong Benjamin, 2016. "Structural VARs, deterministic and stochastic trends: how much detrending matters for shock identification," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(2), pages 141-157, April.
    16. Dungey, Mardi & Fry, Renée, 2009. "The identification of fiscal and monetary policy in a structural VAR," Economic Modelling, Elsevier, vol. 26(6), pages 1147-1160, November.
    17. Thomai Filippeli & Konstantinos Theodoridis, 2015. "DSGE priors for BVAR models," Empirical Economics, Springer, vol. 48(2), pages 627-656, March.
    18. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    19. Giancarlo Corsetti & Luca Dedola & Sylvain Leduc, 2008. "Productivity, External Balance, and Exchange Rates: Evidence on the Transmission Mechanism among G7 Countries," NBER Chapters, in: NBER International Seminar on Macroeconomics 2006, pages 117-194, National Bureau of Economic Research, Inc.
    20. Elmar Mertens, 2008. "Are Spectral Estimators Useful for Implementing Long-Run Restrictions in SVARs?," Working Papers 08.01, Swiss National Bank, Study Center Gerzensee.

    More about this item

    Keywords

    VARMA; VAR; DSGE; Impulse response analysis;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:156:y:2017:i:c:p:1-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.