IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v149y2016icp52-55.html
   My bibliography  Save this article

Simple many-instruments robust standard errors through concentrated instrumental variables

Author

Listed:
  • Bekker, Paul
  • Wansbeek, Tom

Abstract

In a weak and many instruments setting, 2SLS can be severely biased towards OLS and the standard errors can be way too small. LIML is an attractive alternative, especially when the many-instruments robust (MIR) standard errors are used as proposed by Bekker (1994).

Suggested Citation

  • Bekker, Paul & Wansbeek, Tom, 2016. "Simple many-instruments robust standard errors through concentrated instrumental variables," Economics Letters, Elsevier, vol. 149(C), pages 52-55.
  • Handle: RePEc:eee:ecolet:v:149:y:2016:i:c:p:52-55
    DOI: 10.1016/j.econlet.2016.09.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516303718
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.09.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    2. Jerry A. Hausman & Whitney K. Newey & Tiemen Woutersen & John C. Chao & Norman R. Swanson, 2012. "Instrumental variable estimation with heteroskedasticity and many instruments," Quantitative Economics, Econometric Society, vol. 3(2), pages 211-255, July.
    3. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    4. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    2. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    3. Tom Boot & Didier Nibbering, 2024. "Inference on LATEs with covariates," Papers 2402.12607, arXiv.org, revised Nov 2024.
    4. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    5. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    6. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    7. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    8. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    9. Matsushita, Yukitoshi & Otsu, Taisuke, 2020. "Jackknife empirical likelihood: small bandwidth, sparse network and high-dimension asymptotic," LSE Research Online Documents on Economics 106488, London School of Economics and Political Science, LSE Library.
    10. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    11. Carrasco, Marine & Tchuente, Guy, 2015. "Regularized LIML for many instruments," Journal of Econometrics, Elsevier, vol. 186(2), pages 427-442.
    12. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "A specification test for the strength of instrumental variables," Papers 2302.14396, arXiv.org.
    13. Anna Mikusheva & Liyang Sun, 2024. "Weak identification with many instruments," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages -28.
    14. Wang, Wenjie & Doko Tchatoka, Firmin, 2018. "On Bootstrap inconsistency and Bonferroni-based size-correction for the subset Anderson–Rubin test under conditional homoskedasticity," Journal of Econometrics, Elsevier, vol. 207(1), pages 188-211.
    15. Stanislav Anatolyev, 2013. "Instrumental variables estimation and inference in the presence of many exogenous regressors," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 27-72, February.
    16. Yukitoshi Matsushita & Taisuke Otsu, 2019. "Jackknife, small bandwidth and high-dimensional asymptotics," STICERD - Econometrics Paper Series 605, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    17. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    18. Matsushita, Yukitoshi & Otsu, Taisuke, 2023. "Second-order refinements for t-ratios with many instruments," LSE Research Online Documents on Economics 111065, London School of Economics and Political Science, LSE Library.
    19. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    20. Yoonseok Lee & Yu Zhou, 2015. "Averaged Instrumental Variables Estimators," Center for Policy Research Working Papers 180, Center for Policy Research, Maxwell School, Syracuse University.

    More about this item

    Keywords

    LIML; Weak instruments; Concentrated instruments;
    All these keywords.

    JEL classification:

    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:149:y:2016:i:c:p:52-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.