IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v48y2019icp283-294.html
   My bibliography  Save this article

Time frequency analysis of the commonalities between Bitcoin and major Cryptocurrencies: Portfolio risk management implications

Author

Listed:
  • Mensi, Walid
  • Rehman, Mobeen Ur
  • Al-Yahyaee, Khamis Hamed
  • Al-Jarrah, Idries Mohammad Wanas
  • Kang, Sang Hoon

Abstract

This paper uses wavelet coherence and cross wavelet transform approaches to examine co-movement between Bitcoin and five major cryptocurrencies (Dash, Ethereum, Litecoin, Monero and Ripple) and their portfolio risk implications. The results show evidence of co-movements in time frequency space with leading relationships of Bitcoin with Dash, Monero and Ripple, lagging relationship with Ethereum, and out of phase movements with Litecoin. By considering different portfolios (risk-minimizing portfolio, equally weighted portfolio and hedging portfolio), we show evidence that a mixed portfolio (Bitcoin with other cryptocurrencies) provides better diversification benefits for investors and portfolio managers. Finally, an Ethereum-Bitcoin (Monero-Bitcoin) hedging portfolio offers the highest risk reductions and hedging effectiveness under medium and long term (short term) horizon. The results of downside risk reductions are time horizon dependent.

Suggested Citation

  • Mensi, Walid & Rehman, Mobeen Ur & Al-Yahyaee, Khamis Hamed & Al-Jarrah, Idries Mohammad Wanas & Kang, Sang Hoon, 2019. "Time frequency analysis of the commonalities between Bitcoin and major Cryptocurrencies: Portfolio risk management implications," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 283-294.
  • Handle: RePEc:eee:ecofin:v:48:y:2019:i:c:p:283-294
    DOI: 10.1016/j.najef.2019.02.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940818303322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2019.02.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reboredo, Juan C., 2013. "Is gold a safe haven or a hedge for the US dollar? Implications for risk management," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2665-2676.
    2. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    3. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    4. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    5. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    6. Ciaian, Pavel & Rajcaniova, Miroslava & Kancs, d'Artis, 2018. "Virtual relationships: Short- and long-run evidence from BitCoin and altcoin markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 173-195.
    7. François Benhmad, 2013. "Bull or Bear markets," Post-Print hal-03062493, HAL.
    8. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    9. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    10. Mensi, Walid & Hammoudeh, Shawkat & Kang, Sang Hoon, 2015. "Precious metals, cereal, oil and stock market linkages and portfolio risk management: Evidence from Saudi Arabia," Economic Modelling, Elsevier, vol. 51(C), pages 340-358.
    11. Benhmad, François, 2013. "Bull or bear markets: A wavelet dynamic correlation perspective," Economic Modelling, Elsevier, vol. 32(C), pages 576-591.
    12. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    13. Aguiar-Conraria, Luís & Azevedo, Nuno & Soares, Maria Joana, 2008. "Using wavelets to decompose the time–frequency effects of monetary policy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2863-2878.
    14. Luís Aguiar-Conraria & Maria Joana Soares, 2014. "The Continuous Wavelet Transform: Moving Beyond Uni- And Bivariate Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 344-375, April.
    15. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    2. Mensi, Walid & Ur Rehman, Mobeen & Maitra, Debasish & Hamed Al-Yahyaee, Khamis & Sensoy, Ahmet, 2020. "Does bitcoin co-move and share risk with Sukuk and world and regional Islamic stock markets? Evidence using a time-frequency approach," Research in International Business and Finance, Elsevier, vol. 53(C).
    3. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    4. Mensi, Walid & Hkiri, Besma & Al-Yahyaee, Khamis H. & Kang, Sang Hoon, 2018. "Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 74-102.
    5. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Al-Jarrah, Idries Mohammad Wanas & Hamdi, Atef & Kang, Sang Hoon, 2019. "Volatility forecasting, downside risk, and diversification benefits of Bitcoin and oil and international commodity markets: A comparative analysis with yellow metal," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 104-120.
    6. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    7. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    9. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Gabauer, David, 2019. "Cryptocurrency market contagion: Market uncertainty, market complexity, and dynamic portfolios," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 61(C), pages 37-51.
    10. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    11. Corbet, Shaen & Lucey, Brian & Urquhart, Andrew & Yarovaya, Larisa, 2019. "Cryptocurrencies as a financial asset: A systematic analysis," International Review of Financial Analysis, Elsevier, vol. 62(C), pages 182-199.
    12. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    13. Wang, Pengfei & Zhang, Wei & Li, Xiao & Shen, Dehua, 2019. "Is cryptocurrency a hedge or a safe haven for international indices? A comprehensive and dynamic perspective," Finance Research Letters, Elsevier, vol. 31(C), pages 1-18.
    14. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    15. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    16. Vidal-Tomás, David & Ibañez, Ana, 2018. "Semi-strong efficiency of Bitcoin," Finance Research Letters, Elsevier, vol. 27(C), pages 259-265.
    17. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    18. Angerer, Martin & Hoffmann, Christian Hugo & Neitzert, Florian & Kraus, Sascha, 2021. "Objective and subjective risks of investing into cryptocurrencies," Finance Research Letters, Elsevier, vol. 40(C).
    19. Pedro Bação & António Portugal Duarte & Helder Sebastião & Srdjan Redzepagic, 2018. "Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World?," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 65(2), pages 97-117, June.
    20. Yaya, OlaOluwa S. & Ogbonna, Ahamuefula E. & Olubusoye, Olusanya E., 2019. "How persistent and dynamic inter-dependent are pricing of Bitcoin to other cryptocurrencies before and after 2017/18 crash?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).

    More about this item

    Keywords

    Cryptocurrencies; Time frequency analysis; Hedging effectiveness; Downside risk; Wavelet techniques;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:48:y:2019:i:c:p:283-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.