IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v68y2023ics1062940823000943.html
   My bibliography  Save this article

Stock market forecasting accuracy of asymmetric GARCH models during the COVID-19 pandemic

Author

Listed:
  • Caiado, Jorge
  • Lúcio, Francisco

Abstract

We propose a new clustering approach for comparing financial time series and employ it to study how the COVID-19 pandemic affected the U.S. stock market. Essentially, we compute the forecast accuracy of asymmetric GARCH models applied to S&P500 industries and use the model forecast errors for different horizons and cut-off points to calculate a distance matrix for the stock indices. Hierarchical clustering algorithms are used to assign the set of industries into clusters. We found homogeneous clusters of industries in terms of the impact of COVID-19 on US stock market volatility. The industries most affected by the pandemic and with less accurate stock market prediction (Hotels, Airline, Apparel, Accessories & Luxury Goods, and Automobile) are separated in Euclidean distance from those industries that were less impacted by COVID-19 and which had more accurate forecasting (Pharmaceuticals, Internet & Direct Marketing Retail, Data Processing, and Movies & Entertainment).

Suggested Citation

  • Caiado, Jorge & Lúcio, Francisco, 2023. "Stock market forecasting accuracy of asymmetric GARCH models during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
  • Handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000943
    DOI: 10.1016/j.najef.2023.101971
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940823000943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2023.101971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Güngör, Bekir Oray & Ertuğrul, H. Murat & Soytaş, Uğur, 2021. "Impact of Covid-19 outbreak on Turkish gasoline consumption," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. H. Murat Ertuğrul & B. Oray Güngör & Uğur Soytaş, 2021. "The Effect of the COVID-19 Outbreak on the Turkish Diesel Consumption Volatility Dynamics," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 1(1), pages 1-4.
    3. Papadamou, Stephanos & Fassas, Athanasios & Kenourgios, Dimitris & Dimitriou, Dimitrios, 2020. "Direct and Indirect Effects of COVID-19 Pandemic on Implied Stock Market Volatility: Evidence from Panel Data Analysis," MPRA Paper 100020, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qu & Yu, Yuanyuan & Dai, Dongsheng & He, Qian & Lin, Yu, 2024. "Can hybrid model improve the forecasting performance of stock price index amid COVID-19? Contextual evidence from the MEEMD-LSTM-MLP approach," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
    2. Jimin Xiong & Zhanfeng Tang & Yufeng Zhu & Kefeng Xu & Yanhong Yin & Yang Xi, 2021. "Change of Consumption Behaviours in the Pandemic of COVID-19: Examining Residents’ Consumption Expenditure and Driving Determinants," IJERPH, MDPI, vol. 18(17), pages 1-15, August.
    3. Bharat Kumar Meher & Iqbal Thonse Hawaldar & Mathew Thomas Gil & Deebom Zorle Dum, 2021. "Measuring Leverage Effect of Covid 19 on Stock Price Volatility of Energy Companies Using High Frequency Data," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 489-502.
    4. Narayan, Paresh Kumar & Devpura, Neluka & Wang, Hua, 2020. "Japanese currency and stock market—What happened during the COVID-19 pandemic?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 191-198.
    5. Najaf Iqbal & Elie Bouri & Guangrui Liu & Ashish Kumar, 2024. "Volatility spillovers during normal and high volatility states and their driving factors: A cross‐country and cross‐asset analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(1), pages 975-995, January.
    6. Peng-Fei Dai & Xiong Xiong & Zhifeng Liu & Toan Luu Duc Huynh & Jianjun Sun, 2021. "Preventing crash in stock market: The role of economic policy uncertainty during COVID-19," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-15, December.
    7. Gächter, Martin & Huber, Florian & Meier, Martin, 2022. "A shot for the US economy," Finance Research Letters, Elsevier, vol. 47(PA).
    8. Zheng Zheng Li & Yidong Xiao & Chi-Wei Su, 2021. "Does COVID-19 Drive Stock Price Bubbles in Medical Mask?," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 2(4), pages 1-6.
    9. Padhan, Rakesh & Prabheesh, K.P., 2021. "The economics of COVID-19 pandemic: A survey," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 220-237.
    10. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.
    11. Runumi Das & Arabinda Debnath, 2022. "Analyzing the COVID-19 Pandemic Volatility Spillover Influence on the Collaboration of Foreign and Indian Stock Markets," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 14(2), pages 411-452, June.
    12. Ahmed Nazmus Sakib & Talayeh Razzaghi & Md Monjur Hossain Bhuiyan, 2023. "Forecasting the Fuel Consumption and Price for a Future Pandemic Outbreak: A Case Study in the USA under COVID-19," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    13. Naidu, Dharmendra & Ranjeeni, Kumari, 2021. "Effect of coronavirus fear on the performance of Australian stock returns: Evidence from an event study," Pacific-Basin Finance Journal, Elsevier, vol. 66(C).
    14. Zorana Zoran Stanković & Milena Nebojsa Rajic & Zorana Božić & Peđa Milosavljević & Ancuța Păcurar & Cristina Borzan & Răzvan Păcurar & Emilia Sabău, 2024. "The Volatility Dynamics of Prices in the European Power Markets during the COVID-19 Pandemic Period," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    15. Qiuyun Wang & Lu Liu, 2022. "Pandemic or panic? A firm-level study on the psychological and industrial impacts of COVID-19 on the Chinese stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
    16. Muhammad Naeem Shahid, 2022. "COVID-19 and adaptive behavior of returns: evidence from commodity markets," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-15, December.
    17. Güngör, Bekir Oray & Ertuğrul, H. Murat & Soytaş, Uğur, 2021. "Impact of Covid-19 outbreak on Turkish gasoline consumption," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    18. Feng, Gen-Fu & Yang, Hao-Chang & Gong, Qiang & Chang, Chun-Ping, 2021. "What is the exchange rate volatility response to COVID-19 and government interventions?," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 705-719.
    19. Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
    20. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2022. "The impact and role of COVID-19 uncertainty: A global industry analysis," International Review of Financial Analysis, Elsevier, vol. 80(C).

    More about this item

    Keywords

    Cluster analysis; COVID-19; Forecast accuracy; Threshold GARCH model; S&P500; Unsupervised machine learning;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:68:y:2023:i:c:s1062940823000943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.