IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12692-d1222480.html
   My bibliography  Save this article

Forecasting the Fuel Consumption and Price for a Future Pandemic Outbreak: A Case Study in the USA under COVID-19

Author

Listed:
  • Ahmed Nazmus Sakib

    (School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA)

  • Talayeh Razzaghi

    (School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA)

  • Md Monjur Hossain Bhuiyan

    (School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA)

Abstract

The COVID-19 epidemic and the measures adopted to contain it have had a significant impact on energy patterns throughout the world. The pandemic and movement restrictions led to unpredictable fluctuations in power systems demand and the fuel price for a delayed period. Monkeypox, another viral disease, appeared during the post-COVID period. It is assumed that the outbreak of monkeypox is unlikely due to the implication of preventive measures experienced from COVID-19. At the same time, the probability of an epidemic cannot be blindly overlooked. This paper aims to examine and analyze historical data to look at how much petroleum fuel was used for generating power and how the price of petroleum fuel changed over seven years, from January 2016 to August 2022. This period covers the time before the COVID-19 pandemic, during the pandemic, and after the pandemic. Several time-series forecasting models, including all four benchmark methods (Mean, Naive, Drift, and Snaive), Seasonal and Trend decomposition using Loess (STL), Exponential Smoothing (ETS), and Autoregressive Integrated Moving Average (ARIMA) methods have been applied for both fuel consumption and price prediction. The best forecasting method for fuel price and consumption has been identified among these methods. The best forecasting method for fuel consumption observed is ETS based on the RMSE value, which is 799.59, and the ARIMA method for fuel price, with RMSE 4.67. The paper also utilizes the ARIMAX model by incorporating multiple exogenous variables, such as monthly mean temperature, mean fuel price, and mileage of vehicles traveling during a certain period of pandemic lock-down. It will assist in capturing the non-smooth and stochastic pattern of fuel consumption and price due to the pandemic by separating the seasonal influence and, thus, provide a prediction of the consumption pattern in the event of any future pandemic. The novelty of the article will assist in exploring the potential energy demand in terms of cost and consumption of fuel during any pandemic period, considering the associated abnormalities.

Suggested Citation

  • Ahmed Nazmus Sakib & Talayeh Razzaghi & Md Monjur Hossain Bhuiyan, 2023. "Forecasting the Fuel Consumption and Price for a Future Pandemic Outbreak: A Case Study in the USA under COVID-19," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12692-:d:1222480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Güngör, Bekir Oray & Ertuğrul, H. Murat & Soytaş, Uğur, 2021. "Impact of Covid-19 outbreak on Turkish gasoline consumption," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    2. Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
    3. Amevi Acakpovi & Alfred Tettey Ternor & Nana Yaw Asabere & Patrick Adjei & Abdul-Shakud Iddrisu, 2020. "Time Series Prediction of Electricity Demand Using Adaptive Neuro-Fuzzy Inference Systems," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jimin Xiong & Zhanfeng Tang & Yufeng Zhu & Kefeng Xu & Yanhong Yin & Yang Xi, 2021. "Change of Consumption Behaviours in the Pandemic of COVID-19: Examining Residents’ Consumption Expenditure and Driving Determinants," IJERPH, MDPI, vol. 18(17), pages 1-15, August.
    2. Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.
    3. Zheng Zheng Li & Yidong Xiao & Chi-Wei Su, 2021. "Does COVID-19 Drive Stock Price Bubbles in Medical Mask?," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 2(4), pages 1-6.
    4. Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
    5. Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    6. Changjun Huang & Lv Zhou & Fenliang Liu & Yuanzhi Cao & Zhong Liu & Yun Xue, 2023. "Deformation Prediction of Dam Based on Optimized Grey Verhulst Model," Mathematics, MDPI, vol. 11(7), pages 1-15, April.
    7. Xu, Jin & Huang, Shoujun & Shi, Lu & Sharma, Susan Sunila, 2021. "Trade conflicts and energy firms' market values: Evidence from China," Energy Economics, Elsevier, vol. 101(C).
    8. Nader Karimi & Erfan Salavati & Hirbod Assa & Hojatollah Adibi, 2023. "Sensitivity Analysis of Optimal Commodity Decision Making with Neural Networks: A Case for COVID-19," Mathematics, MDPI, vol. 11(5), pages 1-15, February.
    9. Daniel Stefan Armeanu & Stefan Cristian Gherghina & Jean Vasile Andrei & Camelia Catalina Joldes, 2023. "Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets," Energy & Environment, , vol. 34(5), pages 1433-1470, August.
    10. Sahar Ahmadzadeh & Tahmina Ajmal & Ramakrishnan Ramanathan & Yanqing Duan, 2023. "A Comprehensive Review on Food Waste Reduction Based on IoT and Big Data Technologies," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    11. Paresh Kumar Narayan & Syed Aun R. Rizvi & Ali Sakti, 2022. "Did green debt instruments aid diversification during the COVID-19 pandemic?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-15, December.
    12. Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
    13. Zhang, Xiaokong & Chai, Jian & Tian, Lingyue & Yang, Ying & Zhang, Zhe George & Pan, Yue, 2023. "Forecast and structural characteristics of China's oil product consumption embedded in bottom-line thinking," Energy, Elsevier, vol. 278(PA).
    14. Caiado, Jorge & Lúcio, Francisco, 2023. "Stock market forecasting accuracy of asymmetric GARCH models during the COVID-19 pandemic," The North American Journal of Economics and Finance, Elsevier, vol. 68(C).
    15. Huang, Shoujun & Liu, Hezhe, 2021. "Impact of COVID-19 on stock price crash risk: Evidence from Chinese energy firms," Energy Economics, Elsevier, vol. 101(C).
    16. Dorota Zebrowska-Suchodolska & Andrzej Karpio & Krzysztof Kompa, 2021. "COVID-19 Pandemic: Stock Markets Situation in European Ex-Communist Countries," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 1106-1128.
    17. Raydonal Ospina & Jaciele Oliveira & Cristiano Ferraz & André Leite & João Gondim, 2023. "Ensemble Algorithms to Improve COVID-19 Growth Curve Estimates," Stats, MDPI, vol. 6(4), pages 1-18, September.
    18. Feras Alasali & Khaled Nusair & Lina Alhmoud & Eyad Zarour, 2021. "Impact of the COVID-19 Pandemic on Electricity Demand and Load Forecasting," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    19. Yıldırım, Durmuş Çağrı & Esen, Ömer & Ertuğrul, Hasan Murat, 2022. "Impact of the COVID-19 pandemic on return and risk transmission between oil and precious metals: Evidence from DCC-GARCH model," Resources Policy, Elsevier, vol. 79(C).
    20. Md Monjur Hossain Bhuiyan & Ahmed Nazmus Sakib & Syed Ishmam Alawee & Talayeh Razzaghi, 2024. "Fueling the Future: A Comprehensive Analysis and Forecast of Fuel Consumption Trends in U.S. Electricity Generation," Sustainability, MDPI, vol. 16(6), pages 1-30, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12692-:d:1222480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.