IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v62y2022ics1062940822001140.html
   My bibliography  Save this article

Option pricing with the control variate technique beyond Monte Carlo simulation

Author

Listed:
  • Chiu, Chun-Yuan
  • Dai, Tian-Shyr
  • Lyuu, Yuh-Dauh
  • Liu, Liang-Chih
  • Chen, Yu-Ting

Abstract

Although mostly used alongside Monte Carlo simulation, the control-variate (CV) technique can be applied to other numerical algorithms in option pricing. This paper studies the conditions under which a numerical method (simulation-based or not) can benefit from the CV technique and what approximators can serve as CVs. We demonstrate the ideas with Carr and Madan’s Fourier transform-based algorithm, convolution-based pricing algorithms, and classic binomial trees. Numerical results are provided to show that the CV-enhanced versions are more efficient than the original algorithms.

Suggested Citation

  • Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh & Liu, Liang-Chih & Chen, Yu-Ting, 2022. "Option pricing with the control variate technique beyond Monte Carlo simulation," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:ecofin:v:62:y:2022:i:c:s1062940822001140
    DOI: 10.1016/j.najef.2022.101772
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940822001140
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2022.101772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leisen, Dietmar P. J., 1998. "Pricing the American put option: A detailed convergence analysis for binomial models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1419-1444, August.
    2. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    5. Hull, John & White, Alan, 1988. "The Use of the Control Variate Technique in Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 237-251, September.
    6. Levy, Edmond, 1992. "Pricing European average rate currency options," Journal of International Money and Finance, Elsevier, vol. 11(5), pages 474-491, October.
    7. Kemna, A. G. Z. & Vorst, A. C. F., 1990. "A pricing method for options based on average asset values," Journal of Banking & Finance, Elsevier, vol. 14(1), pages 113-129, March.
    8. Omberg, Edward, 1987. "A Note on the Convergence of Binomial-Pricing and Compound-Option," Journal of Finance, American Finance Association, vol. 42(2), pages 463-469, June.
    9. Chiu, Chun-Yuan & Dai, Tian-Shyr & Lyuu, Yuh-Dauh, 2015. "Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 252(C), pages 418-437.
    10. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    3. Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
    4. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    5. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    6. Akira Yamazaki, 2014. "Pricing average options under time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 17(1), pages 79-111, April.
    7. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    8. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    9. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    10. Mark Joshi & Mike Staunton, 2012. "On the analytical/numerical pricing of American put options against binomial tree prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(1), pages 17-20, December.
    11. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    12. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    13. Riccardo Brignone & Carlo Sgarra, 2020. "Asian options pricing in Hawkes-type jump-diffusion models," Annals of Finance, Springer, vol. 16(1), pages 101-119, March.
    14. Buckley, Adrian & Eijgenhuijsen, Hans, 1997. "A conceptual framework for evaluating foreign investments," Serie Research Memoranda 0008, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    15. Nyoumbi, Christelle Dleuna & Tambue, Antoine, 2023. "Convergence of a fitted finite volume method for pricing two dimensional assets with stochastic volatilities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 388-416.
    16. Jimmy E. Hilliard & Adam L. Schwartz & Alan L. Tucker, 1996. "Bivariate Binomial Options Pricing With Generalized Interest Rate Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(4), pages 585-602, December.
    17. Keng‐Hsin Lo & Kehluh Wang & Ming‐Feng Hsu, 2008. "Pricing European Asian options with skewness and kurtosis in the underlying distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 598-616, June.
    18. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    19. Alonso, Francisco & Blanco, Roberto & Rubio Irigoyen, Gonzalo, 2005. "Testing the Forecasting Performance of Ibex 35 Option-implied Risk-neutral Densities," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    20. Manuel Moreno & Javier F. Navas, 2003. "Australian Asian options," Economics Working Papers 680, Department of Economics and Business, Universitat Pompeu Fabra.
    21. Nengjiu Ju & Rui Zhong, 2006. "Fourier transformation and the pricing of average-rate derivatives," Review of Derivatives Research, Springer, vol. 9(3), pages 187-212, November.

    More about this item

    Keywords

    Numerical algorithm; Monte Carlo simulation; Control variate; Binomial tree; Convolution;
    All these keywords.

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:62:y:2022:i:c:s1062940822001140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.