IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v15y2012i08ns0219024912500586.html
   My bibliography  Save this article

Hermite Binomial Trees: A Novel Technique For Derivatives Pricing

Author

Listed:
  • ARTURO LECCADITO

    (Dipartimento di Scienze Economiche, Statistiche e Finanziarie, Università della Calabria, Ponte Bucci cubo 3C, Rende (CS), 87030, Italy)

  • PIETRO TOSCANO

    (BlackRock Institutional Trust Company, N.A., 400 Howard Street, San Francisco, CA 94105, USA)

  • RADU S. TUNARU

    (Business School, University of Kent, Park Wood Road, Canterbury CT2 7PE, UK)

Abstract

Edgeworth binomial trees were applied to price contingent claims when the underlying return distribution is skewed and leptokurtic, but with the limitation of working only for a limited set of skewness and kurtosis values. Recently, Johnson binomial trees were introduced to accommodate any skewness-kurtosis pair, but with the drawback of numerical convergence issues in some cases. Both techniques may suffer from non-exact matching of the moments of distribution of returns. A solution to this limitation is proposed here based on a new technique employing Hermite polynomials to match exactly the required moments. Several numerical examples illustrate the superior performance of the Hermite polynomials technique to price European and American options in the context of jump-diffusion and stochastic volatility frameworks and options with underlying asset given by the sum of two lognormally distributed random variables.

Suggested Citation

  • Arturo Leccadito & Pietro Toscano & Radu S. Tunaru, 2012. "Hermite Binomial Trees: A Novel Technique For Derivatives Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-36.
  • Handle: RePEc:wsi:ijtafx:v:15:y:2012:i:08:n:s0219024912500586
    DOI: 10.1142/S0219024912500586
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024912500586
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024912500586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    2. Jackwerth, Jens Carsten, 1996. "Generalized Binomial Trees," MPRA Paper 11635, University Library of Munich, Germany, revised 12 May 1997.
    3. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    4. Jean-Guy Simonato, 2011. "Johnson binomial trees," Quantitative Finance, Taylor & Francis Journals, vol. 11(8), pages 1165-1176.
    5. Ren-Raw Chen & Tyler Yang, 1999. "A universal lattice," Review of Derivatives Research, Springer, vol. 3(2), pages 115-133, May.
    6. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    7. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245, July.
    8. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    9. C. J. Corrado & Tie Su, 1997. "Implied volatility skews and stock return skewness and kurtosis implied by stock option prices," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 73-85, March.
    10. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    11. Dietmar Leisen & Matthias Reimer, 1996. "Binomial models for option valuation - examining and improving convergence," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(4), pages 319-346.
    12. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    13. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    14. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    15. Chiarella, Carl & El-Hassan, Nadima & Kucera, Adam, 1999. "Evaluation of American option prices in a path integral framework using Fourier-Hermite series expansions," Journal of Economic Dynamics and Control, Elsevier, vol. 23(9-10), pages 1387-1424, September.
    16. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    17. Trigeorgis, Lenos, 1991. "A Log-Transformed Binomial Numerical Analysis Method for Valuing Complex Multi-Option Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 309-326, September.
    18. Dimitris Flamouris & Daniel Giamouridis, 2002. "Estimating Implied PDFs From American Options on Futures: A New Semiparametric Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(1), pages 1-30, January.
    19. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    20. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    21. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    22. Allen Fleishman, 1978. "A method for simulating non-normal distributions," Psychometrika, Springer;The Psychometric Society, vol. 43(4), pages 521-532, December.
    23. Leisen, Dietmar P. J., 1998. "Pricing the American put option: A detailed convergence analysis for binomial models," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1419-1444, August.
    24. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    25. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    26. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    27. Carl Chiarella, Nadima El-Hassan, & Adam Kucera, "undated". "Option Pricing in a Path Integral Framework Using Fourier-Hermite Series Expansions," Computing in Economics and Finance 1997 132, Society for Computational Economics.
    28. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    29. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    30. Hilliard, Jimmy E. & Schwartz, Adam, 2005. "Pricing European and American Derivatives under a Jump-Diffusion Process: A Bivariate Tree Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(3), pages 671-691, September.
    31. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    32. Peter A. Abken & Dilip B. Madan & Buddhavarapu Sailesh Ramamurtie, 1996. "Estimation of risk-neutral and statistical densities by Hermite polynomial approximation: with an application to Eurodollar futures options," FRB Atlanta Working Paper 96-5, Federal Reserve Bank of Atlanta.
    33. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    34. James Primbs & Muruhan Rathinam & Yuji Yamada, 2007. "Option Pricing with a Pentanomial Lattice Model that Incorporates Skewness and Kurtosis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 1-17.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lo, C.C. & Nguyen, D. & Skindilias, K., 2017. "A Unified Tree approach for options pricing under stochastic volatility models," Finance Research Letters, Elsevier, vol. 20(C), pages 260-268.
    2. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    3. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    2. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    3. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    4. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    5. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    6. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    7. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    8. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 7(1), pages 2-42.
    9. Capelle-Blancard, G. & Jurczenko, E., 1999. "Une application de la formule de Jarrow et Rudd aux options sur indice CAC 40," Papiers d'Economie Mathématique et Applications 2000.05, Université Panthéon-Sorbonne (Paris 1).
    10. Fiorentini, Gabriele & Leon, Angel & Rubio, Gonzalo, 2002. "Estimation and empirical performance of Heston's stochastic volatility model: the case of a thinly traded market," Journal of Empirical Finance, Elsevier, vol. 9(2), pages 225-255, March.
    11. repec:oup:rapstu:v:7:y:2017:i:1:p:2-42. is not listed on IDEAS
    12. Beliaeva, Natalia & Nawalkha, Sanjay, 2012. "Pricing American interest rate options under the jump-extended constant-elasticity-of-variance short rate models," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 151-163.
    13. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    14. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    15. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    16. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    17. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    18. Pakorn Aschakulporn & Jin E. Zhang, 2022. "Bakshi, Kapadia, and Madan (2003) risk-neutral moment estimators: A Gram–Charlier density approach," Review of Derivatives Research, Springer, vol. 25(3), pages 233-281, October.
    19. Pena, Ignacio & Rubio, Gonzalo & Serna, Gregorio, 1999. "Why do we smile? On the determinants of the implied volatility function," Journal of Banking & Finance, Elsevier, vol. 23(8), pages 1151-1179, August.
    20. Marian Micu, 2005. "Extracting expectations from currency option prices: a comparison of methods," Computing in Economics and Finance 2005 226, Society for Computational Economics.
    21. Tebaldi, Claudio, 2005. "Hedging using simulation: a least squares approach," Journal of Economic Dynamics and Control, Elsevier, vol. 29(8), pages 1287-1312, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:15:y:2012:i:08:n:s0219024912500586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.