IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v58y2021ics1062940821001170.html
   My bibliography  Save this article

The ‘COVID’ crash of the 2020 U.S. Stock market

Author

Listed:
  • Shu, Min
  • Song, Ruiqiang
  • Zhu, Wei

Abstract

We employed the log-periodic power law singularity (LPPLS) methodology to systematically investigate the 2020 stock market crash in the U.S. equities sectors with different levels of total market capitalizations through four major U.S. stock market indexes, including the Wilshire 5000 Total Market index, the S&P 500 index, the S&P MidCap 400 index, and the Russell 2000 index, representing the stocks overall, the large capitalization stocks, the middle capitalization stocks and the small capitalization stocks, respectively. During the 2020 U.S. stock market crash, all four indexes lost more than a third of their values within five weeks, while both the middle capitalization stocks and the small capitalization stocks have suffered much greater losses than the large capitalization stocks and stocks overall. Our results indicate that the price trajectories of these four stock market indexes prior to the 2020 stock market crash have clearly featured the obvious LPPLS bubble pattern and were indeed in a positive bubble regime. Contrary to the popular belief that the 2020 US stock market crash was mainly due to the COVID-19 pandemic, we have shown that COVID merely served as sparks and the 2020 U.S. stock market crash had stemmed from the increasingly systemic instability of the stock market itself. We also performed the complementary post-mortem analysis of the 2020 U.S. stock market crash. Our analyses indicate that the probability density distributions of the critical time for these four indexes are positively skewed; the 2020 U.S. stock market crash originated from a bubble that had begun to form as early as September 2018; and the bubble profiles for stocks with different levels of total market capitalizations have distinct temporal patterns. This study not only sheds new light on the makings of the 2020 U.S. stock market crash but also creates a novel pipeline for future real-time crash detection and mechanism dissection of any financial market and/or economic index.

Suggested Citation

  • Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
  • Handle: RePEc:eee:ecofin:v:58:y:2021:i:c:s1062940821001170
    DOI: 10.1016/j.najef.2021.101497
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940821001170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2021.101497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    2. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
    3. Demos, G. & Sornette, D., 2019. "Comparing nested data sets and objectively determining financial bubbles’ inceptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 661-675.
    4. Didier Sornette & Ryan Woodard, & Wanfeng Yan & Wei-Xing Zhou, "undated". "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette bubble Model," Working Papers ETH-RC-11-004, ETH Zurich, Chair of Systems Design.
    5. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    6. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    7. G. Demos & D. Sornette, 2017. "Birth or burst of financial bubbles: which one is easier to diagnose?," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 657-675, May.
    8. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
    9. Jiang, Zhi-Qiang & Zhou, Wei-Xing & Sornette, Didier & Woodard, Ryan & Bastiaensen, Ken & Cauwels, Peter, 2010. "Bubble diagnosis and prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Journal of Economic Behavior & Organization, Elsevier, vol. 74(3), pages 149-162, June.
    10. Zhou, Wei-Xing & Sornette, Didier, 2008. "Analysis of the real estate market in Las Vegas: Bubble, seasonal patterns, and prediction of the CSW indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(1), pages 243-260.
    11. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    12. Qun Zhang & Qunzhi Zhang & Didier Sornette, 2016. "Early Warning Signals of Financial Crises with Multi-Scale Quantile Regressions of Log-Periodic Power Law Singularities," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-43, November.
    13. Wanfeng Yan & Ryan Woodard & Didier Sornette, 2010. "Diagnosis and Prediction of Tipping Points in Financial Markets: Crashes and Rebounds," Papers 1001.0265, arXiv.org, revised Feb 2010.
    14. Vladimir Filimonov & Didier Sornette, "undated". "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Working Papers ETH-RC-11-002, ETH Zurich, Chair of Systems Design.
    15. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    16. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    17. Rui Albuquerque & Yrjo Koskinen & Shuai Yang & Chendi Zhang, 2020. "Resiliency of Environmental and Social Stocks: An Analysis of the Exogenous COVID-19 Market Crash," The Review of Corporate Finance Studies, Society for Financial Studies, vol. 9(3), pages 593-621.
    18. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    19. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    20. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    21. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    22. Graf v. Bothmer, Hans-Christian & Meister, Christian, 2003. "Predicting critical crashes? A new restriction for the free variables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 539-547.
    23. Didier SORNETTE & Guilherme DEMOS & Zhang QUN & Peter CAUWELS & Vladimir FILIMONOV & Qunzhi ZHANG, 2015. "Real-Time Prediction and Post-Mortem Analysis of the Shanghai 2015 Stock Market Bubble and Crash," Swiss Finance Institute Research Paper Series 15-32, Swiss Finance Institute.
    24. Ide, Kayo & Sornette, Didier, 2002. "Oscillatory finite-time singularities in finance, population and rupture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(1), pages 63-106.
    25. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    26. Vladimir Filimonov & Didier Sornette, 2011. "A Stable and Robust Calibration Scheme of the Log-Periodic Power Law Model," Papers 1108.0099, arXiv.org, revised Jun 2013.
    27. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    28. Jan-Christian Gerlach & Guilherme Demos & Didier Sornette, 2018. "Dissection of Bitcoin's Multiscale Bubble History from January 2012 to February 2018," Papers 1804.06261, arXiv.org, revised May 2019.
    29. Li, Chong, 2017. "Log-periodic view on critical dates of the Chinese stock market bubbles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 305-311.
    30. Sornette, Didier & Johansen, Anders, 1997. "Large financial crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 245(3), pages 411-422.
    31. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    32. Rui Albuquerque & Yrjo Koskinen & Shuai Yang & Chendi Zhang, 0. "Resiliency of Environmental and Social Stocks: An Analysis of the Exogenous COVID-19 Market Crash," Review of Corporate Finance Studies, Oxford University Press, vol. 9(3), pages 593-621.
    33. David S. Br�e & Damien Challet & Pier Paolo Peirano, 2013. "Prediction accuracy and sloppiness of log-periodic functions," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 275-280, January.
    34. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    2. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    3. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    4. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    5. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    6. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    7. Shu, Min & Zhu, Wei, 2020. "Real-time prediction of Bitcoin bubble crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    8. Bikramaditya Ghosh & Spyros Papathanasiou & Nikita Ramchandani & Dimitrios Kenourgios, 2021. "Diagnosis and Prediction of IIGPS’ Countries Bubble Crashes during BREXIT," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    9. Westphal, Rebecca & Sornette, Didier, 2020. "Market impact and performance of arbitrageurs of financial bubbles in an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 171(C), pages 1-23.
    10. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    11. Rebecca Westphal & Didier Sornette, 2019. "Market Impact and Performance of Arbitrageurs of Financial Bubbles in An Agent-Based Model," Swiss Finance Institute Research Paper Series 19-29, Swiss Finance Institute.
    12. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2016. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. I," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 44, pages 5-24.
    13. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 2021 Bitcoin Bubbles and Crashes—Detection and Classification," Stats, MDPI, vol. 4(4), pages 1-21, November.
    14. Fantazzini, Dean & Nigmatullin, Erik & Sukhanovskaya, Vera & Ivliev, Sergey, 2017. "Everything you always wanted to know about bitcoin modelling but were afraid to ask. Part 2," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 45, pages 5-28.
    15. V. Filimonov & G. Demos & D. Sornette, 2017. "Modified profile likelihood inference and interval forecast of the burst of financial bubbles," Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1167-1186, August.
    16. Fantazzini, Dean, 2016. "The oil price crash in 2014/15: Was there a (negative) financial bubble?," Energy Policy, Elsevier, vol. 96(C), pages 383-396.
    17. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    18. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    19. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    20. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.

    More about this item

    Keywords

    2020 U.S. stock market crash; COVID-19; Log-periodic power law singularity (LPPLS); LPPLS confidence indicator; Endogenous and exogenous; Financial bubble and crash;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:58:y:2021:i:c:s1062940821001170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.