IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp0939.html
   My bibliography  Save this paper

Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles

Author

Listed:
  • Zhi-Qiang JIANG

    (East China University of Science and Technology (School of Business, School of Science Research Center for Econophysics))

  • Wei-Xing ZHOU

    (East China University of Science and Technology (School of Business, School of Science Research Center for Econophysics) and Research Center on Fictitious Economics & Data Science, Chinese Academy of Sciences)

  • Didier SORNETTE

    (ETH Zurich and Swiss Finance Institute)

  • Ryan WOODARD

    (ETH Zurich)

  • Ken BASTIAENSEN

    (BNP Paribas Fortis)

  • Peter CAUWELS

    (BNP Paribas Fortis)

Abstract

By combining (i) the economic theory of rational expectation bubbles, (ii) behavioral finance on imitation and herding of investors and traders and (iii) the mathematical and statistical physics of bifurcations and phase transitions, the logperiodic power law (LPPL) model has been developed as a flexible tool to detect bubbles. The LPPL model considers the faster-than-exponential (power law with finite-time singularity) increase in asset prices decorated by accelerating oscillations as the main diagnostic of bubbles. It embodies a positive feedback loop of higher return anticipations competing with negative feedback spirals of crash expectations. We use the LPPL model in one of its incarnations to analyze two bubbles and subsequent market crashes in two important indexes in the Chinese stock markets between May 2005 and July 2009. Both the Shanghai Stock Exchange Composite index (US ticker symbol SSEC) and Shenzhen Stock Exchange Component index (SZSC) exhibited such behavior in two distinct time periods: 1) from mid-2005, bursting in October 2007 and 2) from November 2008, bursting in the beginning of August 2009. We successfully predicted time windows for both crashes in advance [24, 1] with the same methods used to successfully predict the peak in mid-2006 of the US housing bubble [37] and the peak in July 2008 of the global oil bubble [26]. The more recent bubble in the Chinese indexes was detected and its end or change of regime was predicted independently by two groups with similar results, showing that the model has been well-documented and can be replicated by industrial practitioners. Here we present more detailed analysis of the individual Chinese index predictions and of the methods used to make and test them. We complement the detection of log-periodic behavior with Lomb spectral analysis of detrended residuals and (H, q)-derivative of logarithmic indexes for both bubbles. We perform unit-root tests on the residuals from the log-periodic power law model to confirm the Ornstein-Uhlenbeck property of bounded residuals, in agreement with the consistent model of ‘explosive’ financial bubbles [16].

Suggested Citation

  • Zhi-Qiang JIANG & Wei-Xing ZHOU & Didier SORNETTE & Ryan WOODARD & Ken BASTIAENSEN & Peter CAUWELS, 2009. "Bubble Diagnosis and Prediction of the 2005-2007 and 2008-2009 Chinese stock market bubbles," Swiss Finance Institute Research Paper Series 09-39, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp0939
    as

    Download full text from publisher

    File URL: http://ssrn.com/abstract=1479479
    Download Restriction: no

    File URL:
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sornette, Didier & Zhou, Wei-Xing, 2004. "Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 412-440.
    2. Zhou, Wei-Xing & Sornette, Didier, 2006. "Fundamental factors versus herding in the 2000–2005 US stock market and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 459-482.
    3. Refet S. Gürkaynak, 2008. "Econometric Tests Of Asset Price Bubbles: Taking Stock," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 166-186, February.
    4. Zhou, Wei-Xing & Sornette, Didier, 2005. "Testing the stability of the 2000 US stock market “antibubble”," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 348(C), pages 428-452.
    5. Ide, Kayo & Sornette, Didier, 2002. "Oscillatory finite-time singularities in finance, population and rupture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 307(1), pages 63-106.
    6. J. Barkley Rosser Jr. (ed.), 2009. "Handbook of Research on Complexity," Books, Edward Elgar Publishing, number 3625.
    7. Li LIN & Ruo En REN & Didier SORNETTE, 2009. "A Consistent Model of ‘Explosive’Financial Bubbles With Mean-Reversing Residuals," Swiss Finance Institute Research Paper Series 09-14, Swiss Finance Institute.
    8. Didier Sornette & Wei-Xing Zhou, 2002. "The US 2000-2002 market descent: How much longer and deeper?," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 468-481.
    9. D. Sornette, 2003. "Critical Market Crashes," Papers cond-mat/0301543, arXiv.org.
    10. Anders Johansen & Olivier Ledoit & Didier Sornette, 2000. "Crashes As Critical Points," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 219-255.
    11. Kaizoji, Taisei & Sornette, Didier, 2008. "Market Bubbles and Chrashes," MPRA Paper 15204, University Library of Munich, Germany.
    12. Zhou, Wei-Xing & Jiang, Zhi-Qiang & Sornette, Didier, 2007. "Exploring self-similarity of complex cellular networks: The edge-covering method with simulated annealing and log-periodic sampling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 741-752.
    13. Zhou, Wei-Xing & Sornette, Didier, 2009. "Numerical investigations of discrete scale invariance in fractals and multifractal measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2623-2639.
    14. Gallegati, Mauro & Palestrini, Antonio & Rosser, J. Barkley, 2011. "The Period Of Financial Distress In Speculative Markets: Interacting Heterogeneous Agents And Financial Constraints," Macroeconomic Dynamics, Cambridge University Press, vol. 15(1), pages 60-79, February.
    15. Wei-Xing Zhou & Didier Sornette, 2003. "Nonparametric Analyses Of Log-Periodic Precursors To Financial Crashes," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 14(08), pages 1107-1125.
    16. J. Barkley Rosser, 2008. "Econophysics And Economic Complexity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(05), pages 745-760.
    17. Anders Johansen & Didier Sornette, 1999. "Critical Crashes," Papers cond-mat/9901035, arXiv.org.
    18. Wei-Xing Zhou & Didier Sornette, 2002. "Statistical Significance Of Periodicity And Log-Periodicity With Heavy-Tailed Correlated Noise," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 137-169.
    19. Zhou, Wei-Xing & Sornette, Didier, 2003. "2000–2003 real estate bubble in the UK but not in the USA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 329(1), pages 249-263.
    20. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    21. A. Johansen & D. Sornette, 1999. "Financial ``Anti-Bubbles'': Log-Periodicity in Gold and Nikkei collapses," Papers cond-mat/9901268, arXiv.org.
    22. Zhou, Wei-Xing & Sornette, Didier, 2006. "Is there a real-estate bubble in the US?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 361(1), pages 297-308.
    23. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    24. Anders Johansen & Didier Sornette, 2000. "Evaluation Of The Quantitative Prediction Of A Trend Reversal On The Japanese Stock Market In 1999," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 359-364.
    25. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    26. L. Lin & Ren R. E & D. Sornette, 2009. "A Consistent Model of `Explosive' Financial Bubbles With Mean-Reversing Residuals," Papers 0905.0128, arXiv.org.
    27. Didier Sornette & Ryan Woodard, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Papers 0905.0220, arXiv.org.
    28. Didier SORNETTE & Ryan WOODARD, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Swiss Finance Institute Research Paper Series 09-15, Swiss Finance Institute.
    29. K. Bastiaensen & P. Cauwels & D. Sornette & R. Woodard & W. -X. Zhou, 2009. "The Chinese Equity Bubble: Ready to Burst," Papers 0907.1827, arXiv.org.
    30. L. Lin & Ren R.E. & D. Sornette, "undated". "A Consistent Model of `Explosive' Financial Bubbles With Mean-Reversing Residuals," Working Papers CCSS-09-002, ETH Zurich, Chair of Systems Design.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
    2. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
    3. Petr Geraskin & Dean Fantazzini, 2013. "Everything you always wanted to know about log-periodic power laws for bubble modeling but were afraid to ask," The European Journal of Finance, Taylor & Francis Journals, vol. 19(5), pages 366-391, May.
    4. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
    5. Zhou, Wei-Xing & Sornette, Didier, 2009. "A case study of speculative financial bubbles in the South African stock market 2003–2006," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 869-880.
    6. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.
    7. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    8. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    9. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    10. Zhou, Wei-Xing & Sornette, Didier, 2004. "Antibubble and prediction of China's stock market and real-estate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 243-268.
    11. Zhou, Wei-Xing & Sornette, Didier, 2006. "Fundamental factors versus herding in the 2000–2005 US stock market and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(2), pages 459-482.
    12. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    13. Sornette, Didier & Woodard, Ryan & Zhou, Wei-Xing, 2009. "The 2006–2008 oil bubble: Evidence of speculation, and prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1571-1576.
    14. Didier Sornette & Ryan Woodard, 2009. "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Papers 0905.0220, arXiv.org.
    15. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Why credit risk markets are predestined for exhibiting log-periodic power law structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 427-449.
    16. Song, Ruiqiang & Shu, Min & Zhu, Wei, 2022. "The 2020 global stock market crash: Endogenous or exogenous?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    17. Min Shu & Ruiqiang Song & Wei Zhu, 2021. "The 'COVID' Crash of the 2020 U.S. Stock Market," Papers 2101.03625, arXiv.org.
    18. Ruiqiang Song & Min Shu & Wei Zhu, 2021. "The 2020 Global Stock Market Crash: Endogenous or Exogenous?," Papers 2101.00327, arXiv.org.
    19. D. Sornette & R. Woodard, "undated". "Financial Bubbles, Real Estate bubbles, Derivative Bubbles, and the Financial and Economic Crisis," Working Papers CCSS-09-003, ETH Zurich, Chair of Systems Design.
    20. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).

    More about this item

    Keywords

    stock market crash; financial bubble; Chinese markets; rational expectation bubble; herding; log-periodic power law; Lomb spectral analysis; unit-root test;
    All these keywords.

    JEL classification:

    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp0939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.