IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1107.3171.html
   My bibliography  Save this paper

Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette Bubble Model

Author

Listed:
  • Didier Sornette
  • Ryan Woodard
  • Wanfeng Yan
  • Wei-Xing Zhou

Abstract

The Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles with finite-time singular crash hazard rates has been developed to describe the dynamics of financial bubbles and crashes. It has been applied successfully to a large variety of financial bubbles in many different markets. Having been developed for more than one decade, the JLS model has been studied, analyzed, used and criticized by several researchers. Much of this discussion is helpful for advancing the research. However, several serious misconceptions seem to be present within this collective conversation both on theoretical and empirical aspects. Several of these problems appear to stem from the fast evolution of the literature on the JLS model and related works. In the hope of removing possible misunderstanding and of catalyzing useful future developments, we summarize these common questions and criticisms concerning the JLS model and offer a synthesis of the existing state-of-the-art and best-practice advices.

Suggested Citation

  • Didier Sornette & Ryan Woodard & Wanfeng Yan & Wei-Xing Zhou, 2011. "Clarifications to Questions and Criticisms on the Johansen-Ledoit-Sornette Bubble Model," Papers 1107.3171, arXiv.org, revised Jun 2013.
  • Handle: RePEc:arx:papers:1107.3171
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1107.3171
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristoffer Pons Bertelsen, 2019. "Comparing Tests for Identification of Bubbles," CREATES Research Papers 2019-16, Department of Economics and Business Economics, Aarhus University.
    2. Papastamatiou, Konstantinos & Karakasidis, Theodoros, 2022. "Bubble detection in Greek Stock Market: A DS-LPPLS model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. T. Kaizoji & M. Leiss & A. Saichev & D. Sornette, 2011. "Super-exponential endogenous bubbles in an equilibrium model of rational and noise traders," Papers 1109.4726, arXiv.org, revised Mar 2014.
    4. Leiss, Matthias & Nax, Heinrich H. & Sornette, Didier, 2015. "Super-exponential growth expectations and the global financial crisis," LSE Research Online Documents on Economics 65434, London School of Economics and Political Science, LSE Library.
    5. Maximilian Brauers & Matthias Thomas & Joachim Zietz, 2014. "Are There Rational Bubbles in REITs? New Evidence from a Complex Systems Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 49(2), pages 165-184, August.
    6. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    7. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    8. Diego Ardila & Peter Cauwels & Dorsa Sanadgol & Didier Sornette, 2013. "Is There A Real Estate Bubble in Switzerland?," Papers 1303.4514, arXiv.org.
    9. Martin Herdegen & Sebastian Herrmann, 2017. "Strict Local Martingales and Optimal Investment in a Black-Scholes Model with a Bubble," Papers 1711.06679, arXiv.org.
    10. Kaizoji, Taisei & Leiss, Matthias & Saichev, Alexander & Sornette, Didier, 2015. "Super-exponential endogenous bubbles in an equilibrium model of fundamentalist and chartist traders," Journal of Economic Behavior & Organization, Elsevier, vol. 112(C), pages 289-310.
    11. Shu, Min & Zhu, Wei, 2020. "Detection of Chinese stock market bubbles with LPPLS confidence indicator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    12. Shu, Min & Song, Ruiqiang & Zhu, Wei, 2021. "The ‘COVID’ crash of the 2020 U.S. Stock market," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    13. Leiss, Matthias & Nax, Heinrich H. & Sornette, Didier, 2015. "Super-exponential growth expectations and the global financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 55(C), pages 1-13.
    14. Marco Bianchetti & Davide Galli & Camilla Ricci & Angelo Salvatori & Marco Scaringi, 2016. "Brexit or Bremain ? Evidence from bubble analysis," Papers 1606.06829, arXiv.org.
    15. Jerome L Kreuser & Didier Sornette, 2017. "Super-Exponential RE Bubble Model with Efficient Crashes," Swiss Finance Institute Research Paper Series 17-33, Swiss Finance Institute.
    16. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    17. Didier Sornette & Peter Cauwels, 2014. "Financial bubbles: mechanisms and diagnostics," Papers 1404.2140, arXiv.org.
    18. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    19. Riza Demirer & Guilherme Demos & Rangan Gupta & Didier Sornette, 2019. "On the predictability of stock market bubbles: evidence from LPPLS confidence multi-scale indicators," Quantitative Finance, Taylor & Francis Journals, vol. 19(5), pages 843-858, May.
    20. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    21. John Fry & McMillan David, 2015. "Stochastic modelling for financial bubbles and policy," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1002152-100, December.
    22. Lin, L. & Ren, R.E. & Sornette, D., 2014. "The volatility-confined LPPL model: A consistent model of ‘explosive’ financial bubbles with mean-reverting residuals," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 210-225.
    23. Spencer Wheatley & Didier Sornette & Tobias Huber & Max Reppen & Robert N. Gantner, 2018. "Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe's Law and the LPPLS Model," Papers 1803.05663, arXiv.org.
    24. V. I. Yukalov & E. P. Yukalova & D. Sornette, 2015. "Dynamical system theory of periodically collapsing bubbles," Papers 1507.05311, arXiv.org.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications
    • G01 - Financial Economics - - General - - - Financial Crises
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1107.3171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.