IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v551y2020ics0378437120302843.html
   My bibliography  Save this article

For evil news rides fast, while good news baits later?—A network based analysis in Chinese stock market

Author

Listed:
  • Borjigin, Sumuya
  • Gao, Ting
  • Sun, Yafei
  • An, Biao

Abstract

As stated by British poet John Milton “For evil news rides fast, while good news baits later”. Does this case exists in the stock markets? In order for investors and regulators to make a well-informed decision, it is essential to understand the propagation characteristics of good information and bad information in the stock market. However, most of the articles focus only on the relationships among markets from a micro perspective, which leads to a lack of systematic study in the whole market. Therefore, it is necessary to study the propagation characteristics of good information and bad information in the whole market. Based on the China Securities Regulatory Commission industry classification criteria, we use stock data of some listed Chinese financial firms to study the propagation characteristics of good information and bad information. Firstly, log return decomposition model is applied to extract good information series and bad information series from the daily log return. Secondly, the linear Granger causality test model is employed to construct good information propagation network and bad information propagation network. Then, the Dijkstra algorithm is used to find the shortest distance between each pair of nodes in the information propagation networks before the construction of good information Dijkstra network and bad information Dijkstra network. Finally, four indicators, including Number, Speed, Depth and Connectless, are proposed to compare and analyze the propagation characteristics of good information and bad information on the constructed Dijkstra networks. As revealed by the comparison results, among the listed Chinese financial firms, good information propagates farther than bad information. However, bad information propagates more easily, faster and more reachable than good information. Bad information propagates more easily, faster and more reachable within the same cluster than between different clusters, while good information propagates farther within the same cluster than between different clusters. From the perspective of information propagation, the performance of log return decomposition is considered to be better than realized semi-variance method.

Suggested Citation

  • Borjigin, Sumuya & Gao, Ting & Sun, Yafei & An, Biao, 2020. "For evil news rides fast, while good news baits later?—A network based analysis in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
  • Handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120302843
    DOI: 10.1016/j.physa.2020.124593
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120302843
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yarovaya, Larisa & Lau, Marco Chi Keung, 2016. "Stock market comovements around the Global Financial Crisis: Evidence from the UK, BRICS and MIST markets," Research in International Business and Finance, Elsevier, vol. 37(C), pages 605-619.
    2. Betz, Frank & Hautsch, Nikolaus & Peltonen, Tuomas A. & Schienle, Melanie, 2016. "Systemic risk spillovers in the European banking and sovereign network," Journal of Financial Stability, Elsevier, vol. 25(C), pages 206-224.
    3. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    4. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    5. Radchenko, Stanislav, 2005. "Oil price volatility and the asymmetric response of gasoline prices to oil price increases and decreases," Energy Economics, Elsevier, vol. 27(5), pages 708-730, September.
    6. Baumöhl, Eduard & Kočenda, Evžen & Lyócsa, Štefan & Výrost, Tomáš, 2018. "Networks of volatility spillovers among stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1555-1574.
    7. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    8. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    9. Bae, Kee-Hong & Andrew Karolyi, G., 1995. "Good news, band news and international spilovers of stock return volatility between Japan and the U.S," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 144-144, May.
    10. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    11. Kim, Jun Sik & Ryu, Doojin, 2014. "Intraday price dynamics in spot and derivatives markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 247-253.
    12. Francis X. Diebold & Kamil Yilmaz, 2016. "Trans-Atlantic Equity Volatility Connectedness: U.S. and European Financial Institutions, 2004–2014," Journal of Financial Econometrics, Oxford University Press, vol. 14(1), pages 81-127.
    13. Andrew J. Patton & Kevin Sheppard, 2015. "Good Volatility, Bad Volatility: Signed Jumps and The Persistence of Volatility," The Review of Economics and Statistics, MIT Press, vol. 97(3), pages 683-697, July.
    14. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    15. Lean, Hooi Hooi & Teng, Kee Tuan, 2013. "Integration of world leaders and emerging powers into the Malaysian stock market: A DCC-MGARCH approach," Economic Modelling, Elsevier, vol. 32(C), pages 333-342.
    16. Gjika, Dritan & Horváth, Roman, 2013. "Stock market comovements in Central Europe: Evidence from the asymmetric DCC model," Economic Modelling, Elsevier, vol. 33(C), pages 55-64.
    17. Bing Zhang & Xindan Li, 2008. "The asymmetric behaviour of stock returns and volatilities: evidence from Chinese stock market," Applied Economics Letters, Taylor & Francis Journals, vol. 15(12), pages 959-962.
    18. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    19. Pindyck, Robert S, 1984. "Risk, Inflation, and the Stock Market," American Economic Review, American Economic Association, vol. 74(3), pages 335-351, June.
    20. Billio, Monica & Getmansky, Mila & Lo, Andrew W. & Pelizzon, Loriana, 2012. "Econometric measures of connectedness and systemic risk in the finance and insurance sectors," Journal of Financial Economics, Elsevier, vol. 104(3), pages 535-559.
    21. Aldasoro, Iñaki & Delli Gatti, Domenico & Faia, Ester, 2017. "Bank networks: Contagion, systemic risk and prudential policy," Journal of Economic Behavior & Organization, Elsevier, vol. 142(C), pages 164-188.
    22. Yeh, Yin-Hua & Lee, Tsun-Siou, 2000. "The interaction and volatility asymmetry of unexpected returns in the greater China stock markets," Global Finance Journal, Elsevier, vol. 11(1-2), pages 129-149.
    23. Hisashi Tanizaki & Shigeyuki Hamori, 2009. "Volatility transmission between Japan, UK and USA in daily stock returns," Empirical Economics, Springer, vol. 36(1), pages 27-54, February.
    24. Booth, G. Geoffrey & Martikainen, Teppo & Tse, Yiuman, 1997. "Price and volatility spillovers in Scandinavian stock markets," Journal of Banking & Finance, Elsevier, vol. 21(6), pages 811-823, June.
    25. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
    26. Kedong Yin & Zhe Liu & Peide Liu, 2017. "Trend analysis of global stock market linkage based on a dynamic conditional correlation network," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(4), pages 779-800, July.
    27. Maderitsch, R., 2015. "Information transmission between stock markets in Hong Kong, Europe and the US: New evidence on time- and state-dependence," Pacific-Basin Finance Journal, Elsevier, vol. 35(PA), pages 13-36.
    28. Al Rahahleh, Naseem & Bhatti, M. Ishaq, 2017. "Co-movement measure of information transmission on international equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 119-131.
    29. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    30. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    31. Tim Bollerslev & Julia Litvinova & George Tauchen, 2006. "Leverage and Volatility Feedback Effects in High-Frequency Data," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 353-384.
    32. Horpestad, Jone B. & Lyócsa, Štefan & Molnár, Peter & Olsen, Torbjørn B., 2019. "Asymmetric volatility in equity markets around the world," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 540-554.
    33. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    34. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
    35. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    36. Mensi, Walid & Boubaker, Ferihane Zaraa & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2018. "Dynamic volatility spillovers and connectedness between global, regional, and GIPSI stock markets," Finance Research Letters, Elsevier, vol. 25(C), pages 230-238.
    37. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    38. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    39. Kundu, Srikanta & Sarkar, Nityananda, 2016. "Return and volatility interdependences in up and down markets across developed and emerging countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 297-311.
    40. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
    41. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    42. Ji, Qiang & Guo, Jian-Feng, 2015. "Market interdependence among commodity prices based on information transmission on the Internet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 35-44.
    43. Long, Ling & Tsui, Albert K. & Zhang, Zhaoyong, 2014. "Conditional heteroscedasticity with leverage effect in stock returns: Evidence from the Chinese stock market," Economic Modelling, Elsevier, vol. 37(C), pages 89-102.
    44. Fenghua Wen & Jihong Xiao & Chuangxia Huang & Xiaohua Xia, 2018. "Interaction between oil and US dollar exchange rate: nonlinear causality, time-varying influence and structural breaks in volatility," Applied Economics, Taylor & Francis Journals, vol. 50(3), pages 319-334, January.
    45. Helen Higgs & Andrew Worthington, 2004. "Transmission of returns and volatility in art markets: a multivariate GARCH analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 11(4), pages 217-222.
    46. Výrost, Tomáš & Lyócsa, Štefan & Baumöhl, Eduard, 2015. "Granger causality stock market networks: Temporal proximity and preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 262-276.
    47. Gang-Jin Wang & Chi Xie & Kaijian He & H. Eugene Stanley, 2017. "Extreme risk spillover network: application to financial institutions," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1417-1433, September.
    48. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    49. Andrew Worthington & Helen Higgs, 2004. "Transmission of equity returns and volatility in Asian developed and emerging markets: a multivariate GARCH analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 9(1), pages 71-80.
    50. Gandy, Axel & Veraart, Luitgard A. M., 2017. "A Bayesian methodology for systemic risk assessment in financial networks," LSE Research Online Documents on Economics 66312, London School of Economics and Political Science, LSE Library.
    51. Xu, Ming & Liang, Sai, 2019. "Input–output networks offer new insights of economic structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    52. Gai, Prasanna & Haldane, Andrew & Kapadia, Sujit, 2011. "Complexity, concentration and contagion," Journal of Monetary Economics, Elsevier, vol. 58(5), pages 453-470.
    53. Jian Chen & Fuwei Jiang & Guoshi Tong, 2017. "Economic policy uncertainty in China and stock market expected returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1265-1286, December.
    54. Axel Gandy & Luitgard A. M. Veraart, 2017. "A Bayesian Methodology for Systemic Risk Assessment in Financial Networks," Management Science, INFORMS, vol. 63(12), pages 4428-4446, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fedorova, E. & Pyltsin, I. & Kovalchuk, Yu. & Drogovoz, P., 2022. "News and social networks of Russian companies: Degree of influence on the securities market," Journal of the New Economic Association, New Economic Association, vol. 53(1), pages 32-52.
    2. Uddin, Moshfique & Chowdhury, Anup & Anderson, Keith & Chaudhuri, Kausik, 2021. "The effect of COVID – 19 pandemic on global stock market volatility: Can economic strength help to manage the uncertainty?," Journal of Business Research, Elsevier, vol. 128(C), pages 31-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baumöhl, Eduard & Kočenda, Evžen & Lyócsa, Štefan & Výrost, Tomáš, 2018. "Networks of volatility spillovers among stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1555-1574.
    2. Newaz, Mohammad Khaleq & Park, Jin Suk, 2019. "The impact of trade intensity and Market characteristics on asymmetric volatility, spillovers and asymmetric spillovers: Evidence from the response of international stock markets to US shocks," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 79-94.
    3. Lyócsa, Štefan & Výrost, Tomáš & Baumöhl, Eduard, 2019. "Return spillovers around the globe: A network approach," Economic Modelling, Elsevier, vol. 77(C), pages 133-146.
    4. Štefan Lyócsa & Roman Horváth, 2018. "Stock Market Contagion: a New Approach," Open Economies Review, Springer, vol. 29(3), pages 547-577, July.
    5. Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Heterogeneous market hypothesis approach for modeling unbiased extreme value volatility estimator in presence of leverage effect: An individual stock level study with economic significance analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 271-285.
    6. Dufour, Jean-Marie & García, René, 2008. "Measuring causality between volatility and returns with high-frequency data," UC3M Working papers. Economics we084422, Universidad Carlos III de Madrid. Departamento de Economía.
    7. Baruník, Jozef & Kočenda, Evžen & Vácha, Lukáš, 2016. "Asymmetric connectedness on the U.S. stock market: Bad and good volatility spillovers," Journal of Financial Markets, Elsevier, vol. 27(C), pages 55-78.
    8. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2017. "Asymmetry in spillover effects: Evidence for international stock index futures markets," International Review of Financial Analysis, Elsevier, vol. 53(C), pages 94-111.
    9. Zhang, Weiping & Zhuang, Xintian & Lu, Yang, 2020. "Spatial spillover effects and risk contagion around G20 stock markets based on volatility network," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    10. Agata Kliber, 2016. "The leverage effect puzzle: the case of European sovereign credit default swap market," Review of Derivatives Research, Springer, vol. 19(3), pages 217-235, October.
    11. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    12. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    13. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    14. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    15. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    16. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    17. Buncic, Daniel & Gisler, Katja I.M., 2016. "Global equity market volatility spillovers: A broader role for the United States," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1317-1339.
    18. Kumar, Pawan & Singh, Vipul Kumar & Rao, Sandeep, 2023. "Does the substitution effect lead to feedback effect linkage between ethanol, crude oil, and soft agricultural commodities?," Energy Economics, Elsevier, vol. 119(C).
    19. Ki-Hong Choi & Ron P. McIver & Salvatore Ferraro & Lei Xu & Sang Hoon Kang, 2021. "Dynamic volatility spillover and network connectedness across ASX sector markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 45(4), pages 677-691, October.
    20. Ma, Chaoqun & Mi, Xianhua & Cai, Zongwu, 2020. "Nonlinear and time-varying risk premia," China Economic Review, Elsevier, vol. 62(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:551:y:2020:i:c:s0378437120302843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.