IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v71y2024ics1062940824000354.html
   My bibliography  Save this article

Dynamic volatility spillover and market emergency: Matching and forecasting

Author

Listed:
  • Zhou, Wei
  • Chen, Yan
  • Chen, Jin

Abstract

Volatility spillover can cause successive and similar volatilities in different markets even financial or economic crises. Many related studies have been presented to analyze it from theoretical and empirical perspectives. However, can this phenomenon show or forecast the important market emergency? How to match them and then provide valuable investment and management suggestions? This could be an interesting topic and also the main issue in this study. In this paper, we first design a new dynamic volatility spillover index (DVSI) to quantitatively measure the volatility spillover effect and its dynamic trends. Furthermore, we further propose the market emergency matching (MEM) model to match the dynamic volatility spillover effect with the market emergency. Thus, we can predictively deal with the market emergency from the dynamic volatility spillover perspective, which could be more effective and valuable in studying this financial phenomenon. Lastly, an empirical investigation of nine international energy markets is given in detail to show these new methods. We find that the proposed methods can not only show the features of the volatility spillover phenomenon among energy markets but also forecast the energy market emergencies and their development trends, which is an important contribution of this study. Thus, this paper provides a new tool to analyze market emergencies and their risk even financial crises.

Suggested Citation

  • Zhou, Wei & Chen, Yan & Chen, Jin, 2024. "Dynamic volatility spillover and market emergency: Matching and forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
  • Handle: RePEc:eee:ecofin:v:71:y:2024:i:c:s1062940824000354
    DOI: 10.1016/j.najef.2024.102110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940824000354
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2024.102110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    2. Antonio Cabrales & Piero Gottardi & Fernando Vega-Redondo, 2017. "Risk Sharing and Contagion in Networks," The Review of Financial Studies, Society for Financial Studies, vol. 30(9), pages 3086-3127.
    3. Geng, Jiang-Bo & Du, Ya-Juan & Ji, Qiang & Zhang, Dayong, 2021. "Modeling return and volatility spillover networks of global new energy companies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    5. Atukeren, Erdal & Çevik, Emrah İsmail & Korkmaz, Turhan, 2021. "Volatility spillovers between WTI and Brent spot crude oil prices: an analysis of granger causality in variance patterns over time," Research in International Business and Finance, Elsevier, vol. 56(C).
    6. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    7. Fenghua Wen & Xin Yang & Wei‐Xing Zhou, 2019. "Tail dependence networks of global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 558-567, January.
    8. Tian, Maoxi & Guo, Fei & Niu, Rong, 2022. "Risk spillover analysis of China’s financial sectors based on a new GARCH copula quantile regression model," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    9. Aloui, Riadh & Aïssa, Mohamed Safouane Ben & Nguyen, Duc Khuong, 2011. "Global financial crisis, extreme interdependences, and contagion effects: The role of economic structure?," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 130-141, January.
    10. Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
    11. Zhou, Wei & Gu, Qinen & Chen, Jin, 2021. "From volatility spillover to risk spread: An empirical study focuses on renewable energy markets," Renewable Energy, Elsevier, vol. 180(C), pages 329-342.
    12. de Oliveira, Felipe A. & Maia, Sinézio F. & de Jesus, Diego P. & Besarria, Cássio da N., 2018. "Which information matters to market risk spreading in Brazil? Volatility transmission modelling using MGARCH-BEKK, DCC, t-Copulas," The North American Journal of Economics and Finance, Elsevier, vol. 45(C), pages 83-100.
    13. Patton, Andrew J, 2001. "Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula," University of California at San Diego, Economics Working Paper Series qt01q7j1s2, Department of Economics, UC San Diego.
    14. Nazlioglu, Saban & Erdem, Cumhur & Soytas, Ugur, 2013. "Volatility spillover between oil and agricultural commodity markets," Energy Economics, Elsevier, vol. 36(C), pages 658-665.
    15. Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
    16. Luo, Changqing & Liu, Lan & Wang, Da, 2021. "Multiscale financial risk contagion between international stock markets: Evidence from EMD-Copula-CoVaR analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    17. Gong, Xu & Shi, Rong & Xu, Jun & Lin, Boqiang, 2021. "Analyzing spillover effects between carbon and fossil energy markets from a time-varying perspective," Applied Energy, Elsevier, vol. 285(C).
    18. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    19. Ma, Yiqun & Wang, Junhao, 2019. "Co-movement between oil, gas, coal, and iron ore prices, the Australian dollar, and the Chinese RMB exchange rates: A copula approach," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    20. Robert F. Engle & Giampiero M. Gallo & Margherita Velucchi, 2012. "Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 222-223, February.
    21. Papathanasiou, Spyros & Dokas, Ioannis & Koutsokostas, Drosos, 2022. "Value investing versus other investment strategies: A volatility spillover approach and portfolio hedging strategies for investors," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    22. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    23. Zhang, Weiping & Zhuang, Xintian & Lu, Yang, 2020. "Spatial spillover effects and risk contagion around G20 stock markets based on volatility network," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    24. Karan Rai & Bhavesh Garg, 2022. "Dynamic correlations and volatility spillovers between stock price and exchange rate in BRIICS economies: evidence from the COVID-19 outbreak period," Applied Economics Letters, Taylor & Francis Journals, vol. 29(8), pages 738-745, May.
    25. Jin Chen & Yue Chen & Qinen Gu & Wei Zhou, 2023. "Network evolution underneath the volatility spillover in traditional and clean energy markets," Applied Economics, Taylor & Francis Journals, vol. 55(58), pages 6905-6921, December.
    26. Choi, Sun-Yong, 2022. "Dynamic volatility spillovers between industries in the US stock market: Evidence from the COVID-19 pandemic and Black Monday," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    27. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).
    28. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    29. Longstaff, Francis A., 2010. "The subprime credit crisis and contagion in financial markets," Journal of Financial Economics, Elsevier, vol. 97(3), pages 436-450, September.
    30. Ashfaq, Saleha & Tang, Yong & Maqbool, Rashid, 2020. "Dynamics of spillover network among oil and leading Asian oil trading countries’ stock markets," Energy, Elsevier, vol. 207(C).
    31. Chang, Kai & Ye, Zhifang & Wang, Weihong, 2019. "Volatility spillover effect and dynamic correlation between regional emissions allowances and fossil energy markets: New evidence from China’s emissions trading scheme pilots," Energy, Elsevier, vol. 185(C), pages 1314-1324.
    32. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    33. Ding, Yinghui & Chen, Shan & Li, Haoran & Sun, Qingru & Chen, Hanyu & Yu, Hui, 2023. "Causality inference among base metal, rare metal and precious metal markets," Resources Policy, Elsevier, vol. 85(PB).
    34. Gong, Xu & Sun, Yi & Du, Zhili, 2022. "Geopolitical risk and China's oil security," Energy Policy, Elsevier, vol. 163(C).
    35. Li, Wenqi, 2021. "COVID-19 and asymmetric volatility spillovers across global stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    36. Meng, Juan & Nie, He & Mo, Bin & Jiang, Yonghong, 2020. "Risk spillover effects from global crude oil market to China’s commodity sectors," Energy, Elsevier, vol. 202(C).
    37. Pan, Qunxing & Mei, Xiaowen & Gao, Tianqing, 2022. "Modeling dynamic conditional correlations with leverage effects and volatility spillover effects: Evidence from the Chinese and US stock markets affected by the recent trade friction," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    38. G. Andrew Karolyi, 2003. "Does International Financial Contagion Really Exist?," International Finance, Wiley Blackwell, vol. 6(2), pages 179-199, July.
    39. Liu, Xueyong & An, Haizhong & Li, Huajiao & Chen, Zhihua & Feng, Sida & Wen, Shaobo, 2017. "Features of spillover networks in international financial markets: Evidence from the G20 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 265-278.
    40. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    41. Liu, Lu, 2014. "Extreme downside risk spillover from the United States and Japan to Asia-Pacific stock markets," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 39-48.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    2. Dai, Zhifeng & Tang, Rui & Zhang, Xinhua, 2023. "Multilayer network analysis for measuring the inter-connectedness between the oil market and G20 stock markets," Energy Economics, Elsevier, vol. 120(C).
    3. Li, Jingyu & Liu, Ranran & Yao, Yanzhen & Xie, Qiwei, 2022. "Time-frequency volatility spillovers across the international crude oil market and Chinese major energy futures markets: Evidence from COVID-19," Resources Policy, Elsevier, vol. 77(C).
    4. Sun Meng & Yan Chen, 2023. "Market Volatility Spillover, Network Diffusion, and Financial Systemic Risk Management: Financial Modeling and Empirical Study," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    5. Gong, Jue & Wang, Gang-Jin & Zhou, Yang & Zhu, You & Xie, Chi & Foglia, Matteo, 2023. "Spreading of cross-market volatility information: Evidence from multiplex network analysis of volatility spillovers," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
    6. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    7. Oktay Ozkan & Salah Abosedra & Arshian Sharif & Andrew Adewale Alola, 2024. "Dynamic volatility among fossil energy, clean energy and major assets: evidence from the novel DCC-GARCH," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-19, June.
    8. Harald Schmidbauer & Angi Rösch & Erhan Uluceviz & Narod Erkol, 2016. "The Russian Stock Market during the Ukrainian Crisis: A Network Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 66(6), pages 478-509, December.
    9. Wang, Kangsheng & Wen, Fenghua & Gong, Xu, 2024. "Oil prices and systemic financial risk: A complex network analysis," Energy, Elsevier, vol. 293(C).
    10. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    11. Yizhuo Zhang & Rui Chen & Ding Ma, 2020. "A Weighted and Directed Perspective of Global Stock Market Connectedness: A Variance Decomposition and GERGM Framework," Sustainability, MDPI, vol. 12(11), pages 1-23, June.
    12. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    13. Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2022. "Asymmetric risk transfer in global equity markets: An extended sample that includes the COVID pandemic period," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    14. Ren, Xiaohang & Li, Yiying & Sun, Xianming & Bu, Ruijun & Jawadi, Fredj, 2023. "Modeling extreme risk spillovers between crude oil and Chinese energy futures markets," Energy Economics, Elsevier, vol. 126(C).
    15. Dahl, Roy Endré & Oglend, Atle & Yahya, Muhammad, 2020. "Dynamics of volatility spillover in commodity markets: Linking crude oil to agriculture," Journal of Commodity Markets, Elsevier, vol. 20(C).
    16. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2021. "Volatility spillovers during market supply shocks: The case of negative oil prices," Resources Policy, Elsevier, vol. 74(C).
    17. Ding, Qian & Huang, Jianbai & Chen, Jinyu, 2021. "Dynamic and frequency-domain risk spillovers among oil, gold, and foreign exchange markets: Evidence from implied volatility," Energy Economics, Elsevier, vol. 102(C).
    18. Chen, Huayi & Shi, Huai-Long & Zhou, Wei-Xing, 2024. "Carbon volatility connectedness and the role of external uncertainties: Evidence from China," Journal of Commodity Markets, Elsevier, vol. 33(C).
    19. Wu, Xinyu & Jiang, Zhengting, 2023. "Time-varying asymmetric volatility spillovers among China’s carbon markets, new energy market and stock market under the shocks of major events," Energy Economics, Elsevier, vol. 126(C).
    20. Das, Debojyoti & Maitra, Debasish & Dutta, Anupam & Basu, Sankarshan, 2022. "Financial stress and crude oil implied volatility: New evidence from continuous wavelet transformation framework," Energy Economics, Elsevier, vol. 115(C).

    More about this item

    Keywords

    Dynamic volatility spillover; Market emergency; DVSI method; MEM model; Energy markets;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:71:y:2024:i:c:s1062940824000354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.