IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i3p451-464.html
   My bibliography  Save this article

Change detection in autoregressive time series

Author

Listed:
  • Gombay, Edit

Abstract

Autoregressive time series models of order p have p+2 parameters, the mean, the variance of the white noise and the p autoregressive parameters. Change in any of these over time is a sign of disturbance that is important to detect. The methods of this paper can test for change in any one of these p+2 parameters separately, or in any collection of them. They are available in forms that make one-sided tests possible, furthermore, they can be used to test for a temporary change. The test statistics are based on the efficient score vector. The large sample properties of the change-point estimator are also explored.

Suggested Citation

  • Gombay, Edit, 2008. "Change detection in autoregressive time series," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 451-464, March.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:451-464
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00006-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pouliot, William, 2016. "Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry," Economic Modelling, Elsevier, vol. 58(C), pages 523-534.
    2. Pap Gyula & Szabó Tamás T., 2016. "Change detection in the Cox–Ingersoll–Ross model," Statistics & Risk Modeling, De Gruyter, vol. 33(1-2), pages 21-40, September.
    3. Minyoung Jo & Sangyeol Lee, 2021. "On CUSUM test for dynamic panel models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 515-542, June.
    4. Song, Junmo & Kang, Jiwon, 2018. "Parameter change tests for ARMA–GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 41-56.
    5. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2023. "Testing for changes in linear models using weighted residuals," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    6. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    7. Gombay, Edit & Serban, Daniel, 2009. "Monitoring parameter change in time series models," Journal of Multivariate Analysis, Elsevier, vol. 100(4), pages 715-725, April.
    8. Jin, Hao & Zhang, Jinsuo, 2010. "Subsampling tests for variance changes in the presence of autoregressive parameter shifts," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2255-2265, November.
    9. Baisuo Jin & Mong-Na Lo Huang & Baiqi Miao, 2011. "Testing for variance changes in autoregressive models with unknown order," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 927-936, January.
    10. Haejune Oh & Sangyeol Lee, 2019. "Modified residual CUSUM test for location-scale time series models with heteroscedasticity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1059-1091, October.
    11. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    12. Mohamed Salah Eddine Arrouch & Echarif Elharfaoui & Joseph Ngatchou-Wandji, 2023. "Change-Point Detection in the Volatility of Conditional Heteroscedastic Autoregressive Nonlinear Models," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    13. Marie Hušková & Zuzana Prášková & Josef G. Steinebach, 2022. "Estimating a gradual parameter change in an AR(1)-process," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(7), pages 771-808, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:3:p:451-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.