IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v29y2012i6p2095-2103.html
   My bibliography  Save this article

Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks

Author

Listed:
  • Wang, Zongrun
  • Wang, Wuchao
  • Chen, Xiaohong
  • Jin, Yanbo
  • Zhou, Yanju

Abstract

The research of operational risk management among Chinese commercial banks is still in its preliminary stage. Operational risk events are rare and data is hard to collect. This leads to very small data samples. Besides, a large number of empirical researches show that the distributions of operational losses are often skewed with fat tails. To address these issues, this paper puts forward a loss distribution approach (LDA) based on bootstrap sampling and piecewise-defined severity distribution (BS-PSD-LDA). The approach divides data samples into two distinct parts (high-frequency low-severity losses and low-frequency high-severity losses), and fits the two parts by lognormal distribution and Generalized Pareto distribution respectively. Using hand-collected samples of 426 operational losses in Chinese commercial banks during 1994–2010, we estimate the magnitude of operational losses using the BS-PSD-LDA method. We show that our method provides a better fit than the traditional parametric methods. Besides, the method using historical simulation of nonparametric method seems to offer a good fit to the sample as well. However, we believe that the BS-PSD-LDA approach offers improvement from the perspective of satisfying risk control requirement of the regulatory authority and ensuring the efficiency of funds' utilization.

Suggested Citation

  • Wang, Zongrun & Wang, Wuchao & Chen, Xiaohong & Jin, Yanbo & Zhou, Yanju, 2012. "Using BS-PSD-LDA approach to measure operational risk of Chinese commercial banks," Economic Modelling, Elsevier, vol. 29(6), pages 2095-2103.
  • Handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2095-2103
    DOI: 10.1016/j.econmod.2012.06.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999312002040
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2012.06.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    2. Kühn, Reimer & Neu, Peter, 2003. "Functional correlation approach to operational risk in banking organizations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 650-666.
    3. Aquaro, V. & Bardoscia, M. & Bellotti, R. & Consiglio, A. & De Carlo, F. & Ferri, G., 2010. "A Bayesian Networks approach to Operational Risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1721-1728.
    4. Dalla Valle, L. & Giudici, P., 2008. "A Bayesian approach to estimate the marginal loss distributions in operational risk management," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3107-3127, February.
    5. Robert Jarrow, 2017. "Operational Risk," World Scientific Book Chapters, in: THE ECONOMIC FOUNDATIONS OF RISK MANAGEMENT Theory, Practice, and Applications, chapter 8, pages 69-70, World Scientific Publishing Co. Pte. Ltd..
    6. Grażyna Trzpiot & Justyna Majewska, 2010. "Estimation of Value at Risk: extreme value and robust approaches," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(1), pages 131-143.
    7. Chapelle, Ariane & Crama, Yves & Hübner, Georges & Peters, Jean-Philippe, 2008. "Practical methods for measuring and managing operational risk in the financial sector: A clinical study," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1049-1061, June.
    8. Pavel V. Shevchenko, 2010. "Implementing loss distribution approach for operational risk," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 26(3), pages 277-307, May.
    9. Jianping Li & Jichuang Feng & Jianming Chen, 2009. "A Piecewise-Defined Severity Distribution-Based Loss Distribution Approach To Estimate Operational Risk: Evidence From Chinese National Commercial Banks," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 727-747.
    10. Kabir Dutta & Jason Perry, 2006. "A tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital," Working Papers 06-13, Federal Reserve Bank of Boston.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoqian Zhu & Jianping Li & Dengsheng Wu, 2019. "Should the Advanced Measurement Approach for Operational Risk be Discarded? Evidence from the Chinese Banking Industry," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-15, March.
    2. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    3. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinhong Yao & Jianping Li, 2022. "Operational risk assessment of third-party payment platforms: a case study of China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-20, December.
    2. Lu, Zhaoyang, 2011. "Modeling the yearly Value-at-Risk for operational risk in Chinese commercial banks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(4), pages 604-616.
    3. Lu Wei & Jianping Li & Xiaoqian Zhu, 2018. "Operational Loss Data Collection: A Literature Review," Annals of Data Science, Springer, vol. 5(3), pages 313-337, September.
    4. Dahen, Hela & Dionne, Georges, 2010. "Scaling models for the severity and frequency of external operational loss data," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1484-1496, July.
    5. Xu, Chi & Zheng, Chunling & Wang, Donghua & Ji, Jingru & Wang, Nuan, 2019. "Double correlation model for operational risk: Evidence from Chinese commercial banks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 327-339.
    6. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    7. Dionne, Georges & Saissi-Hassani, Samir, 2016. "Hidden Markov Regimes in Operational Loss Data: Application to the Recent Financial Crisis," Working Papers 15-3, HEC Montreal, Canada Research Chair in Risk Management.
    8. Xiaoqian Zhu & Jianping Li & Dengsheng Wu, 2019. "Should the Advanced Measurement Approach for Operational Risk be Discarded? Evidence from the Chinese Banking Industry," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-15, March.
    9. Valérie Chavez-Demoulin & Paul Embrechts & Marius Hofert, 2016. "An Extreme Value Approach for Modeling Operational Risk Losses Depending on Covariates," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(3), pages 735-776, September.
    10. Chernobai, Anna & Yildirim, Yildiray, 2008. "The dynamics of operational loss clustering," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2655-2666, December.
    11. Yuan Hong & Shaojian Qu, 2024. "Beyond Boundaries: The AHP-DEA Model for Holistic Cross-Banking Operational Risk Assessment," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
    12. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).
    13. Tyrone Lin & Chia-Chi Lee & Yu-Chuan Kuan, 2013. "The optimal operational risk capital requirement by applying the advanced measurement approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 85-101, January.
    14. Luciana Dalla Valle, 2009. "Bayesian Copulae Distributions, with Application to Operational Risk Management," Methodology and Computing in Applied Probability, Springer, vol. 11(1), pages 95-115, March.
    15. Iñaki Aldasoro & Leonardo Gambacorta & Paolo Giudici & Thomas Leach, 2023. "Operational and Cyber Risks in the Financial Sector," International Journal of Central Banking, International Journal of Central Banking, vol. 19(5), pages 340-402, December.
    16. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    17. Stefan Mittnik & Sandra Paterlini & Tina Yener, 2011. "Operational–risk Dependencies and the Determination of Risk Capital," Center for Economic Research (RECent) 070, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    18. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    19. Juan Carlos Escanciano & Zaichao Du, 2015. "Backtesting Expected Shortfall: Accounting for Tail Risk," CAEPR Working Papers 2015-001, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    20. Yuqian Xu & Lingjiong Zhu & Michael Pinedo, 2020. "Operational Risk Management: A Stochastic Control Framework with Preventive and Corrective Controls," Operations Research, INFORMS, vol. 68(6), pages 1804-1825, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:29:y:2012:i:6:p:2095-2103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.