IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v135y2014icp523-538.html
   My bibliography  Save this article

Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West

Author

Listed:
  • Andersen, F.M.
  • Larsen, H.V.
  • Juul, N.
  • Gaardestrup, R.B.

Abstract

Assessing grid developments the spatial distribution of the electricity consumption is important. In Denmark the electricity grid consists of transmission – and local distribution grids with different voltages that are connected via transformer stations each covering a local area with between 10.000 and 100.000 customers. Data for the hourly electricity consumption at transformer stations shows that the profile of consumption differs considerably between local areas, and this is partly due to a different weight of categories of customers in the different areas. Categories of customers have quite distinct consumption profiles and contribute quite differently to the aggregated load profile. In forecasts, demand by categories of customers is expected to develop differently implying that both the level and the profile of consumption at each transformer stations are expected to change differently. Still, in the previous planning of the transmission grid in Denmark specific local conditions have not been considered.

Suggested Citation

  • Andersen, F.M. & Larsen, H.V. & Juul, N. & Gaardestrup, R.B., 2014. "Differentiated long term projections of the hourly electricity consumption in local areas. The case of Denmark West," Applied Energy, Elsevier, vol. 135(C), pages 523-538.
  • Handle: RePEc:eee:appene:v:135:y:2014:i:c:p:523-538
    DOI: 10.1016/j.apenergy.2014.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dordonnat, V. & Koopman, S.J. & Ooms, M. & Dessertaine, A. & Collet, J., 2008. "An hourly periodic state space model for modelling French national electricity load," International Journal of Forecasting, Elsevier, vol. 24(4), pages 566-587.
    2. Barten, A. P., 1969. "Maximum likelihood estimation of a complete system of demand equations," European Economic Review, Elsevier, vol. 1(1), pages 7-73.
    3. Räsänen, Teemu & Voukantsis, Dimitrios & Niska, Harri & Karatzas, Kostas & Kolehmainen, Mikko, 2010. "Data-based method for creating electricity use load profiles using large amount of customer-specific hourly measured electricity use data," Applied Energy, Elsevier, vol. 87(11), pages 3538-3545, November.
    4. Martin-Rodriguez, Gloria & Caceres-Hernandez, Jose Juan, 2005. "Modelling the hourly Spanish electricity demand," Economic Modelling, Elsevier, vol. 22(3), pages 551-569, May.
    5. Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    6. Andersen, F.M. & Larsen, H.V. & Gaardestrup, R.B., 2013. "Long term forecasting of hourly electricity consumption in local areas in Denmark," Applied Energy, Elsevier, vol. 110(C), pages 147-162.
    7. Moazzami, M. & Khodabakhshian, A. & Hooshmand, R., 2013. "A new hybrid day-ahead peak load forecasting method for Iran’s National Grid," Applied Energy, Elsevier, vol. 101(C), pages 489-501.
    8. Dashti, Reza & Afsharnia, Saeed & Ghasemi, Hassan, 2010. "A new long term load management model for asset governance of electrical distribution systems," Applied Energy, Elsevier, vol. 87(12), pages 3661-3667, December.
    9. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    10. F. M. Andersen & H. V. Larsen & L. Kitzing & P. E. Morthorst, 2014. "Who gains from hourly time‐of‐use retail prices on electricity? An analysis of consumption profiles for categories of Danish electricity customers," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 582-593, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilmaz, S. & Majcen, D. & Heidari, M. & Mahmoodi, J. & Brosch, T. & Patel, M.K., 2019. "Analysis of the impact of energy efficiency labelling and potential changes on electricity demand reduction of white goods using a stock model: The case of Switzerland," Applied Energy, Elsevier, vol. 239(C), pages 117-132.
    2. Martin Robinius & Felix ter Stein & Adrien Schwane & Detlef Stolten, 2017. "A Top-Down Spatially Resolved Electrical Load Model," Energies, MDPI, vol. 10(3), pages 1-16, March.
    3. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    4. Gerossier, Alexis & Barbier, Thibaut & Girard, Robin, 2017. "A novel method for decomposing electricity feeder load into elementary profiles from customer information," Applied Energy, Elsevier, vol. 203(C), pages 752-760.
    5. Andersen, Frits Møller & Baldini, Mattia & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2017. "Households’ hourly electricity consumption and peak demand in Denmark," Applied Energy, Elsevier, vol. 208(C), pages 607-619.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, F.M. & Larsen, H.V. & Gaardestrup, R.B., 2013. "Long term forecasting of hourly electricity consumption in local areas in Denmark," Applied Energy, Elsevier, vol. 110(C), pages 147-162.
    2. F. M. Andersen & H. V. Larsen & L. Kitzing & P. E. Morthorst, 2014. "Who gains from hourly time‐of‐use retail prices on electricity? An analysis of consumption profiles for categories of Danish electricity customers," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(6), pages 582-593, November.
    3. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    4. Angreine Kewo & Pinrolinvic D. K. Manembu & Per Sieverts Nielsen, 2020. "Synthesising Residential Electricity Load Profiles at the City Level Using a Weighted Proportion (Wepro) Model," Energies, MDPI, vol. 13(14), pages 1-28, July.
    5. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    6. Erik Dahlquist & Fredrik Wallin & Koteshwar Chirumalla & Reza Toorajipour & Glenn Johansson, 2023. "Balancing Power in Sweden Using Different Renewable Resources, Varying Prices, and Storages Like Batteries in a Resilient Energy System," Energies, MDPI, vol. 16(12), pages 1-28, June.
    7. Voulis, Nina & Warnier, Martijn & Brazier, Frances M.T., 2018. "Understanding spatio-temporal electricity demand at different urban scales: A data-driven approach," Applied Energy, Elsevier, vol. 230(C), pages 1157-1171.
    8. Ciarreta, Aitor & Espinosa, Maria Paz & Pizarro-Irizar, Cristina, 2023. "Pricing policies for efficient demand side management in liberalized electricity markets," Economic Modelling, Elsevier, vol. 121(C).
    9. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    10. Gerossier, Alexis & Barbier, Thibaut & Girard, Robin, 2017. "A novel method for decomposing electricity feeder load into elementary profiles from customer information," Applied Energy, Elsevier, vol. 203(C), pages 752-760.
    11. Barnett, William A. & Serletis, Apostolos, 2008. "Consumer preferences and demand systems," Journal of Econometrics, Elsevier, vol. 147(2), pages 210-224, December.
    12. Mazzocchi, Mario, 2006. "Time patterns in UK demand for alcohol and tobacco: an application of the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2191-2205, May.
    13. Keuzenkamp, Hugo A. & Barten, Anton P., 1995. "Rejection without falsification on the history of testing the homogeneity condition in the theory of consumer demand," Journal of Econometrics, Elsevier, vol. 67(1), pages 103-127, May.
    14. Laura Spierdijk & Sherrill Shaffer & Tim Considine, 2016. "Adapting to changing input prices in response to the crisis: The case of US commercial banks," CAMA Working Papers 2016-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Huffman, Wallace, 2004. "Marketizing U.S. Production in the Post-War Era: Implications for Estimating CPI Bias and Real Income from a Complete-Household-Demand System," Staff General Research Papers Archive 11987, Iowa State University, Department of Economics.
    16. Barnett, William A. & Serletis, Apostolos, 2008. "The Differential Approach to Demand Analysis and the Rotterdam Model," MPRA Paper 12319, University Library of Munich, Germany.
    17. Paris, Quirino & Caracciolo, Francesco, 2012. "Quantity Versus Shares in Estimating Demand Systems," Working Papers 124575, University of California, Davis, Department of Agricultural and Resource Economics.
    18. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    19. van Heeswijk, B J & de Boer, P M C & Harkema, R, 1993. "A Dynamic Specification of an AIDS Import Allocation Model," Empirical Economics, Springer, vol. 18(1), pages 57-73.
    20. Korir, Lilian & Rizov, Marian & Ruto, Eric, 2020. "Food security in Kenya: Insights from a household food demand model," Economic Modelling, Elsevier, vol. 92(C), pages 99-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:135:y:2014:i:c:p:523-538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.