IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i1p221-227.html
   My bibliography  Save this article

A note on time-reversibility of multivariate linear processes

Author

Listed:
  • Kung-Sik Chan
  • Lop-Hing Ho
  • Howell Tong

Abstract

We derive some readily verifiable necessary and sufficient conditions for a multivariate non-Gaussian linear process to be time-reversible, under two sets of conditions on the contemporaneous dependence structure of the innovations. One set of conditions concerns the case of independent-component innovations, in which case a multivariate non-Gaussian linear process is time-reversible if and only if the coefficients consist of essentially asymmetric columns with column-specific origins of symmetry or symmetric pairs of columns with pair-specific origins of symmetry. On the other hand, for dependent-component innovations plus other regularity conditions, a multivariate non-Gaussian linear process is time-reversible if and only if the coefficients are essentially symmetric about some origin. Copyright 2006, Oxford University Press.

Suggested Citation

  • Kung-Sik Chan & Lop-Hing Ho & Howell Tong, 2006. "A note on time-reversibility of multivariate linear processes," Biometrika, Biometrika Trust, vol. 93(1), pages 221-227, March.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:1:p:221-227
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.1.221
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pascual, Lorenzo & Fresoli, Diego Eduardo, 2011. "Bootstrap forecast of multivariate VAR models without using the backward representation," DES - Working Papers. Statistics and Econometrics. WS ws113426, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Davis, Richard A. & Song, Li, 2020. "Noncausal vector AR processes with application to economic time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 246-267.
    3. Gourieroux, C. & Jasiak, J. & Monfort, A., 2020. "Stationary bubble equilibria in rational expectation models," Journal of Econometrics, Elsevier, vol. 218(2), pages 714-735.
    4. Christian Gourieroux & Joann Jasiak, 2016. "Filtering, Prediction and Simulation Methods for Noncausal Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 405-430, May.
    5. Bernd Funovits, 2020. "Identifiability and Estimation of Possibly Non-Invertible SVARMA Models: A New Parametrisation," Papers 2002.04346, arXiv.org, revised Feb 2021.
    6. Wilmer Martínez-Rivera & Thomaz Carvalhaes & Petar Jevtić & T. Agami Reddy, 2023. "A treatment-effect model to quantify human dimensions of disaster impacts: the case of Hurricane Maria in Puerto Rico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2033-2068, March.
    7. Hamidi Sahneh, Mehdi, 2013. "Testing for Noncausal Vector Autoregressive Representation," MPRA Paper 68867, University Library of Munich, Germany, revised 16 Aug 2014.
    8. Lanne, Markku & Saikkonen, Pentti, 2013. "Noncausal Vector Autoregression," Econometric Theory, Cambridge University Press, vol. 29(3), pages 447-481, June.
    9. Gianluca Cubadda & Francesco Giancaterini & Alain Hecq & Joann Jasiak, 2023. "Optimization of the Generalized Covariance Estimator in Noncausal Processes," Papers 2306.14653, arXiv.org, revised Jan 2024.
    10. Christian Gourieroux & Joann Jasiak, 2023. "Dynamic deconvolution and identification of independent autoregressive sources," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 151-180, March.
    11. Phillip Wild & John Foster, 2012. "On testing for non-linear and time irreversible probabilistic structure in high frequency ASX financial time series data," Discussion Papers Series 466, School of Economics, University of Queensland, Australia.
    12. Gourieroux, Christian & Jasiak, Joann, 2017. "Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation," Journal of Econometrics, Elsevier, vol. 200(1), pages 118-134.
    13. Fresoli, Diego & Ruiz, Esther & Pascual, Lorenzo, 2015. "Bootstrap multi-step forecasts of non-Gaussian VAR models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 834-848.
    14. Funovits, Bernd, 2024. "Identifiability and estimation of possibly non-invertible SVARMA Models: The normalised canonical WHF parametrisation," Journal of Econometrics, Elsevier, vol. 241(2).
    15. Christian Gouriéroux & Jean-Michel Zakoïan, 2015. "On Uniqueness of Moving Average Representations of Heavy-tailed Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(6), pages 876-887, November.
    16. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    17. Joann Jasiak & Aryan Manafi Neyazi, 2023. "GCov-Based Portmanteau Test," Papers 2312.05373, arXiv.org.
    18. Miguel Cabello, 2022. "Robust Estimation of the non-Gaussian Dimension in Structural Linear Models," Papers 2212.07263, arXiv.org, revised Sep 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:1:p:221-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.