IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/71105.html
   My bibliography  Save this paper

Local Explosion Modelling by Noncausal Process

Author

Listed:
  • Gouriéroux, Christian
  • Zakoian, Jean-Michel

Abstract

The noncausal autoregressive process with heavy-tailed errors possesses a nonlinear causal dynamics, which allows for %unit root, local explosion or asymmetric cycles often observed in economic and financial time series. It provides a new model for multiple local explosions in a strictly stationary framework. The causal predictive distribution displays surprising features, such as the existence of higher moments than for the marginal distribution, or the presence of a unit root in the Cauchy case. Aggregating such models can yield complex dynamics with local and global explosion as well as variation in the rate of explosion. The asymptotic behavior of a vector of sample autocorrelations is studied in a semi-parametric noncausal AR(1) framework with Pareto-like tails, and diagnostic tests are proposed. Empirical results based on the Nasdaq composite price index are provided.

Suggested Citation

  • Gouriéroux, Christian & Zakoian, Jean-Michel, 2016. "Local Explosion Modelling by Noncausal Process," MPRA Paper 71105, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:71105
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/71105/1/MPRA_paper_71105.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Yangru Wu & Jun Yu, 2011. "EXPLOSIVE BEHAVIOR IN THE 1990s NASDAQ: WHEN DID EXUBERANCE ESCALATE ASSET VALUES?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(1), pages 201-226, February.
    2. Busetti, Fabio & Taylor, A. M. Robert, 2004. "Tests of stationarity against a change in persistence," Journal of Econometrics, Elsevier, vol. 123(1), pages 33-66, November.
    3. Bin Chen & Jinho Choi & Juan Carlos Escanciano, 2017. "Testing for fundamental vector moving average representations," Quantitative Economics, Econometric Society, vol. 8(1), pages 149-180, March.
    4. Evans, George W, 1991. "Pitfalls in Testing for Explosive Bubbles in Asset Prices," American Economic Review, American Economic Association, vol. 81(4), pages 922-930, September.
    5. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    6. Ramsey, James B & Rothman, Philip, 1996. "Time Irreversibility and Business Cycle Asymmetry," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(1), pages 1-21, February.
    7. Shiqing Ling & Dong Li, 2008. "Asymptotic inference for a nonstationary double AR (1) model," Biometrika, Biometrika Trust, vol. 95(1), pages 257-263.
    8. Diba, Behzad T & Grossman, Herschel I, 1988. "Explosive Rational Bubbles in Stock Prices?," American Economic Review, American Economic Association, vol. 78(3), pages 520-530, June.
    9. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    10. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1043-1078, November.
    11. Henri Nyberg & Markku Lanne & Erkka Saarinen, 2012. "Does noncausality help in forecasting economic time series?," Economics Bulletin, AccessEcon, vol. 32(4), pages 2849-2859.
    12. J.‐W. Lin & A. I. McLeod, 2008. "Portmanteau tests for ARMA models with infinite variance," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 600-617, May.
    13. Charemza, Wojciech W. & Deadman, Derek F., 1995. "Speculative bubbles with stochastic explosive roots: The failure of unit root testing," Journal of Empirical Finance, Elsevier, vol. 2(2), pages 153-163, June.
    14. Jun Yu, 2004. "Empirical Characteristic Function Estimation and Its Applications," Econometric Reviews, Taylor & Francis Journals, vol. 23(2), pages 93-123.
    15. Flood, Robert P & Garber, Peter M, 1980. "Market Fundamentals versus Price-Level Bubbles: The First Tests," Journal of Political Economy, University of Chicago Press, vol. 88(4), pages 745-770, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frédéric BEC & Alain GUAY, 2020. "A simple unit root test consistent against any stationary alternative," Working Papers 2020-28, Center for Research in Economics and Statistics.
    2. Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
    3. Davis, Richard A. & Song, Li, 2020. "Noncausal vector AR processes with application to economic time series," Journal of Econometrics, Elsevier, vol. 216(1), pages 246-267.
    4. Frédérique Bec & Heino Bohn Nielsen & Sarra Saïdi, 2020. "Mixed Causal–Noncausal Autoregressions: Bimodality Issues in Estimation and Unit Root Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(6), pages 1413-1428, December.
    5. Antonio Aguirre & Ignacio N. Lobato, 2024. "Evidence of non-fundamentalness in OECD capital stocks," Empirical Economics, Springer, vol. 67(2), pages 761-772, August.
    6. Fries, Sébastien, 2018. "Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds," MPRA Paper 97353, University Library of Munich, Germany, revised Nov 2019.
    7. Christian Gourieroux & Joann Jasiak & Michelle Tong, 2021. "Convolution‐based filtering and forecasting: An application to WTI crude oil prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1230-1244, November.
    8. Gourieroux, Christian & Jasiak, Joann, 2018. "Misspecification of noncausal order in autoregressive processes," Journal of Econometrics, Elsevier, vol. 205(1), pages 226-248.
    9. Funovits, Bernd, 2024. "Identifiability and estimation of possibly non-invertible SVARMA Models: The normalised canonical WHF parametrisation," Journal of Econometrics, Elsevier, vol. 241(2).
    10. Frederique Bec & Alain Guay, 2020. "A Simple Unit Root Test Consistent Against Any Stationary Alternative," Working Papers 20-20, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
    11. Hall, Mauri K. & Jasiak, Joann, 2024. "Modelling common bubbles in cryptocurrency prices," Economic Modelling, Elsevier, vol. 139(C).
    12. Kramkov, Viacheslav & Maksimov, Andrey, 2020. "Loan market markups and noncausal autoregressions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 48-69.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    2. Peter C. B. Phillips & Shuping Shi & Jun Yu, 2015. "Testing For Multiple Bubbles: Historical Episodes Of Exuberance And Collapse In The S&P 500," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1043-1078, November.
    3. Efthymios Pavlidis & Alisa Yusupova & Ivan Paya & David Peel & Enrique Martínez-García & Adrienne Mack & Valerie Grossman, 2016. "Episodes of Exuberance in Housing Markets: In Search of the Smoking Gun," The Journal of Real Estate Finance and Economics, Springer, vol. 53(4), pages 419-449, November.
    4. Balcilar, Mehmet & Gupta, Rangan & Jooste, Charl & Wohar, Mark E., 2016. "Periodically collapsing bubbles in the South African stock market," Research in International Business and Finance, Elsevier, vol. 38(C), pages 191-201.
    5. Serhan Cevik & Sadhna Naik, 2024. "Bubble detective: City‐level analysis of house price cycles," International Finance, Wiley Blackwell, vol. 27(1), pages 2-16, April.
    6. Cretí, Anna & Joëts, Marc, 2017. "Multiple bubbles in the European Union Emission Trading Scheme," Energy Policy, Elsevier, vol. 107(C), pages 119-130.
    7. Peter C. B. Phillips & Shu-Ping Shi & Jun Yu, 2011. "Testing for Multiple Bubbles," Working Papers CoFie-03-2011, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    8. Sharma, Shahil & Escobari, Diego, 2018. "Identifying price bubble periods in the energy sector," Energy Economics, Elsevier, vol. 69(C), pages 418-429.
    9. Su, Chi-Wei & Li, Zheng-Zheng & Chang, Hsu-Ling & Lobonţ, Oana-Ramona, 2017. "When Will Occur the Crude Oil Bubbles?," Energy Policy, Elsevier, vol. 102(C), pages 1-6.
    10. Li, Hemei & Liu, Zhenya & Xiao, Zhijie, 2024. "Sequential monitoring of stock market price changes," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 156-172.
    11. Paulo M.M. Rodrigues & Rita Fradique Lourenço, 2015. "House prices: bubbles, exuberance or something else? Evidence from euro area countries," Working Papers w201517, Banco de Portugal, Economics and Research Department.
    12. Francisco Blasques & Siem Jan Koopman & Gabriele Mingoli, 2023. "Observation-Driven filters for Time- Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics," Tinbergen Institute Discussion Papers 23-065/III, Tinbergen Institute, revised 01 Mar 2024.
    13. Assaf, Ata & Demir, Ender & Ersan, Oguz, 2024. "Detecting and date-stamping bubbles in fan tokens," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 98-113.
    14. Pedersen, Thomas Quistgaard & Schütte, Erik Christian Montes, 2020. "Testing for explosive bubbles in the presence of autocorrelated innovations," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 207-225.
    15. Zhao, Yanping & Chang, Hsu-Ling & Su, Chi-Wei & Nian, Rui, 2015. "Gold bubbles: When are they most likely to occur?," Japan and the World Economy, Elsevier, vol. 34, pages 17-23.
    16. Fries, Sébastien & Zakoian, Jean-Michel, 2019. "Mixed Causal-Noncausal Ar Processes And The Modelling Of Explosive Bubbles," Econometric Theory, Cambridge University Press, vol. 35(6), pages 1234-1270, December.
    17. Zheng-Zheng Li & Ran Tao & Chi-Wei Su & Oana-Ramona Lobonţ, 2019. "Does Bitcoin bubble burst?," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 91-105, January.
    18. Catherine Araujo Bonjean & Catherine Simonet, 2016. "Are grain markets in Niger driven by speculation?," Oxford Economic Papers, Oxford University Press, vol. 68(3), pages 714-735.
    19. Michaelides, Panayotis G. & Tsionas, Efthymios G. & Konstantakis, Konstantinos N., 2016. "Non-linearities in financial bubbles: Theory and Bayesian evidence from S&P500," Journal of Financial Stability, Elsevier, vol. 24(C), pages 61-70.
    20. Gomez-Gonzalez, Jose Eduardo & Sanin-Restrepo, Sebastian, 2018. "The maple bubble: A history of migration among Canadian provinces," Journal of Housing Economics, Elsevier, vol. 41(C), pages 57-71.

    More about this item

    Keywords

    Causal innovation; Explosive bubble; Heavy-tailed errors; Noncausal process; Stable process;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:71105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.