IDEAS home Printed from https://ideas.repec.org/a/wly/canjec/v34y2001i1p196-211.html
   My bibliography  Save this article

Renewable resource management with environmental prediction

Author

Listed:
  • Christopher Costello
  • Stephen Polasky
  • Andrew Solow

Abstract

Variations in environmental conditions affect renewable resource growth. The ability to predict such variations is improving, providing scope for improved management. We generalize a common stochastic stock recruitment model to explore how optimal management changes with environmental prediction. We obtain three main results. First, while it might seem that a prediction of adverse future conditions should lead to more conservative management, the opposite may be true. Second, optimal management requires only a one‐period‐ahead forecast, suggesting forecast accuracy is more important than forecast lead time. Finally, we derive conditions on environmental fluctuations guaranteeing positive optimal harvest in every period. Gestion d'une ressource renouvelable quand on prédit les conditions futures de l'environnement. Les variations dans les conditions de l'environnement affectent la croissance de la ressource renouvelable. La capacitéà prévoir ces variations s'améliore et ouvre la possibilité d'améliorer la gestion de la ressource. Les auteurs utilisent un modèle de ressource renouvelable avec croissance stochastique et obtiennent trois résultats. D'abord, alors qu'il peut sembler que des prévisions pessimistes de conditions difficiles dans l'avenir peuvent conduire à une gestion plus conservatrice, le contraire peut être vrai. Ensuite, la gestion optimale requiert seulement une prédiction pour la prochaine période: voilà qui suggère qu'il est plus important d'avoir une prévision exacte que d'avoir des prévisions à plus long terme. Enfin, on développe les conditions pour les fluctuations de l'environnement qui garantissent une récolte positive optimale à chaque période.

Suggested Citation

  • Christopher Costello & Stephen Polasky & Andrew Solow, 2001. "Renewable resource management with environmental prediction," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 34(1), pages 196-211, February.
  • Handle: RePEc:wly:canjec:v:34:y:2001:i:1:p:196-211
    DOI: 10.1111/0008-4085.00070
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/0008-4085.00070
    Download Restriction: no

    File URL: https://libkey.io/10.1111/0008-4085.00070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:canjec:v:34:y:2001:i:1:p:196-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1540-5982 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.