IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v58y2015icp81-100.html
   My bibliography  Save this article

Optimal order display in limit order markets with liquidity competition

Author

Listed:
  • Cebiroğlu, Gökhan
  • Horst, Ulrich

Abstract

Order display is associated with benefits and costs. Benefits arise from increased execution-priority, while costs are due to adverse market impact. We analyze a structural model of optimal order placement that captures trade-off between the costs and benefits of order display. For a benchmark model of pure liquidity competition, we give a closed-form solution for optimal display sizes. We show that competition in liquidity supply incentivizes the use of hidden orders to prevent losses due to over-bidding. Thus, because aggressive liquidity competition is more prevalent in liquid stocks, our model predicts that the proportion of hidden liquidity is higher in liquid markets. Our theoretical considerations ares supported by an empirical analysis using high-frequency order-message data from NASDAQ. We find that there are no benefits in hiding orders in il-liquid stocks, whereas the performance gains can be significant in liquid stocks.

Suggested Citation

  • Cebiroğlu, Gökhan & Horst, Ulrich, 2015. "Optimal order display in limit order markets with liquidity competition," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 81-100.
  • Handle: RePEc:eee:dyncon:v:58:y:2015:i:c:p:81-100
    DOI: 10.1016/j.jedc.2015.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188915000779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jedc.2015.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Griffiths, Mark D. & Smith, Brian F. & Turnbull, D. Alasdair S. & White, Robert W., 2000. "The costs and determinants of order aggressiveness," Journal of Financial Economics, Elsevier, vol. 56(1), pages 65-88, April.
    2. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    3. Burton Hollifield & Robert A. Miller & Patrik Sandås & Joshua Slive, 2006. "Estimating the Gains from Trade in Limit‐Order Markets," Journal of Finance, American Finance Association, vol. 61(6), pages 2753-2804, December.
    4. Biais, Bruno & Hillion, Pierre & Spatt, Chester, 1995. "An Empirical Analysis of the Limit Order Book and the Order Flow in the Paris Bourse," Journal of Finance, American Finance Association, vol. 50(5), pages 1655-1689, December.
    5. Frey, Stefan & Sandås, Patrik, 2009. "The impact of iceberg orders in limit order books," CFR Working Papers 09-06, University of Cologne, Centre for Financial Research (CFR).
    6. Buti, Sabrina & Rindi, Barbara, 2013. "Undisclosed orders and optimal submission strategies in a limit order market," Journal of Financial Economics, Elsevier, vol. 109(3), pages 797-812.
    7. Madhavan, Ananth & Richardson, Matthew & Roomans, Mark, 1997. "Why Do Security Prices Change? A Transaction-Level Analysis of NYSE Stocks," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 1035-1064.
    8. Ulrich Horst & Jinniao Qiu & Qi Zhang, 2014. "A Constrained Control Problem with Degenerate Coefficients and Degenerate Backward SPDEs with Singular Terminal Condition," Papers 1407.0108, arXiv.org, revised Jul 2015.
    9. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    10. Hasbrouck, Joel & Saar, Gideon, 2009. "Technology and liquidity provision: The blurring of traditional definitions," Journal of Financial Markets, Elsevier, vol. 12(2), pages 143-172, May.
    11. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    12. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    13. Charles Cao & Oliver Hansch & Xiaoxin Wang, 2009. "The information content of an open limit‐order book," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(1), pages 16-41, January.
    14. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    15. Ranaldo, Angelo, 2004. "Order aggressiveness in limit order book markets," Journal of Financial Markets, Elsevier, vol. 7(1), pages 53-74, January.
    16. Esser, Angelika & Monch, Burkart, 2007. "The navigation of an iceberg: The optimal use of hidden orders," Finance Research Letters, Elsevier, vol. 4(2), pages 68-81, June.
    17. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    18. Robert Almgren, 2003. "Optimal execution with nonlinear impact functions and trading-enhanced risk," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(1), pages 1-18.
    19. Roberto Pascual & David Veredas, 2009. "What pieces of limit order book information matter in explaining order choice by patient and impatient traders?," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 527-545.
    20. Paulwin Graewe & Ulrich Horst & Jinniao Qiu, 2013. "A Non-Markovian Liquidation Problem and Backward SPDEs with Singular Terminal Conditions," Papers 1309.0461, arXiv.org, revised Jan 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing-Qing Yang & Wai-Ki Ching & Jiawen Gu & Tak-Kuen Siu, 2020. "Trading strategy with stochastic volatility in a limit order book market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 277-301, June.
    2. Ulrich Horst & Michael Paulsen, 2017. "A Law of Large Numbers for Limit Order Books," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1280-1312, November.
    3. Du, Bian & Zhu, Hongliang & Zhao, Jingdong, 2016. "Optimal execution in high-frequency trading with Bayesian learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 767-777.
    4. Gao, Xuefeng & Xu, Tianrun, 2022. "Order scoring, bandit learning and order cancellations," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    5. Chen, Yuanyuan & Gao, Xuefeng & Li, Duan, 2018. "Optimal order execution using hidden orders," Journal of Economic Dynamics and Control, Elsevier, vol. 94(C), pages 89-116.
    6. Ulrich Horst & Dorte Kreher, 2015. "A weak law of large numbers for a limit order book model with fully state dependent order dynamics," Papers 1502.04359, arXiv.org, revised May 2016.
    7. Ulrich Horst & Wei Xu, 2017. "A Scaling Limit for Limit Order Books Driven by Hawkes Processes," Papers 1709.01292, arXiv.org, revised Aug 2018.
    8. Ulrich Horst & Dorte Kreher & Konstantins Starovoitovs, 2023. "Second-Order Approximation of Limit Order Books in a Single-Scale Regime," Papers 2308.00805, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    2. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    3. Härdle, Wolfgang Karl & Hautsch, Nikolaus & Mihoci, Andrija, 2012. "Modelling and forecasting liquidity supply using semiparametric factor dynamics," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 610-625.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    5. Cebiroglu, Gökhan & Hautsch, Nikolaus & Horst, Ulrich, 2014. "Order exposure and liquidity coordination: Does hidden liquidity harm price efficiency?," CFS Working Paper Series 468, Center for Financial Studies (CFS).
    6. Lo, Danny K. & Hall, Anthony D., 2015. "Resiliency of the limit order book," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 222-244.
    7. Wei Cui & Anthony Brabazon & Michael O'Neill, 2011. "Dynamic trade execution: a grammatical evolution approach," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 4-31.
    8. S. C. P. Yam & W. Zhou, 2017. "Optimal Liquidation of Child Limit Orders," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 517-545, May.
    9. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    10. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    11. Aurélien Alfonsi & Alexander Schied, 2010. "Optimal trade execution and absence of price manipulations in limit order book models," Post-Print hal-00397652, HAL.
    12. Hai-Chuan Xu & Wei Chen & Xiong Xiong & Wei Zhang & Wei-Xing Zhou & H Eugene Stanley, 2016. "Limit-order book resiliency after effective market orders: Spread, depth and intensity," Papers 1602.00731, arXiv.org, revised Feb 2017.
    13. Ningyuan Chen & Steven Kou & Chun Wang, 2018. "A Partitioning Algorithm for Markov Decision Processes with Applications to Market Microstructure," Management Science, INFORMS, vol. 64(2), pages 784-803, February.
    14. Siu, Chi Chung & Guo, Ivan & Zhu, Song-Ping & Elliott, Robert J., 2019. "Optimal execution with regime-switching market resilience," Journal of Economic Dynamics and Control, Elsevier, vol. 101(C), pages 17-40.
    15. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    16. Axel Groß‐KlußMann & Nikolaus Hautsch, 2013. "Predicting Bid–Ask Spreads Using Long‐Memory Autoregressive Conditional Poisson Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(8), pages 724-742, December.
    17. Kovaleva, P. & Iori, G., 2012. "Optimal Trading Strategies in a Limit Order Market with Imperfect Liquidity," Working Papers 12/05, Department of Economics, City University London.
    18. Cebiroğlu, Gökhan & Horst, Ulrich, 2012. "Hidden liquidity: Determinants and impact," SFB 649 Discussion Papers 2012-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    20. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.

    More about this item

    Keywords

    Hidden liquidity; Liquidity competition; Limit order book; Market impact; Order flow dynamics; High-frequency trading;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • G1 - Financial Economics - - General Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:58:y:2015:i:c:p:81-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jedc .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.