IDEAS home Printed from https://ideas.repec.org/p/lec/leecon/19-02.html
   My bibliography  Save this paper

The Design and Regulation of High Frequency Traders

Author

Listed:
  • Daniel Ladley

Abstract

Central to the ability of a high frequency trader to make money is speed. In order to be first to trading opportunities fi rms invest in the fastest hardware and the shortest connections between their machines and the markets. This, however, is not enough, algorithms must be short, no more than a few lines of code. As a result there is a trade-off in the design of optimal HFT strategies: being the fastest necessitates being less sophisticated. To understand the effect of this tension a computational model is presented that captures latency, both of code execution and information transmission. Trading algorithms are modelled through genetic programmes with longer programmes allowing more sophisticated decisions at the cost of slower execution times. It is shown that depending on the market composition short fast strategies and slower more sophisticated strategies may both be viable and exploit different trading opportunities. The relative pro fits of these different approaches vary, however, slow traders bene t from their presence. A suite of regulations are tested to manage the risks associated with high frequency trading, the majority are found to be ineffective, however, constraining the ratio of orders to trades may be promising.

Suggested Citation

  • Daniel Ladley, 2019. "The Design and Regulation of High Frequency Traders," Discussion Papers in Economics 19/02, Division of Economics, School of Business, University of Leicester.
  • Handle: RePEc:lec:leecon:19/02
    as

    Download full text from publisher

    File URL: https://www.le.ac.uk/economics/research/RePEc/lec/leecon/dp19-02.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friederich, Sylvain & Payne, Richard, 2015. "Order-to-trade ratios and market liquidity," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 214-223.
    2. Biais, Bruno & Foucault, Thierry & Moinas, Sophie, 2015. "Equilibrium fast trading," Journal of Financial Economics, Elsevier, vol. 116(2), pages 292-313.
    3. Paulin, James & Calinescu, Anisoara & Wooldridge, Michael, 2019. "Understanding flash crash contagion and systemic risk: A micro–macro agent-based approach," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 200-229.
    4. Chiarella, Carl & Ladley, Daniel, 2016. "Chasing trends at the micro-level: The effect of technical trading on order book dynamics," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 119-131.
    5. Neely, Christopher & Weller, Paul & Dittmar, Rob, 1997. "Is Technical Analysis in the Foreign Exchange Market Profitable? A Genetic Programming Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(4), pages 405-426, December.
    6. Burton Hollifield & Robert A. Miller & Patrik Sandås & Joshua Slive, 2006. "Estimating the Gains from Trade in Limit‐Order Markets," Journal of Finance, American Finance Association, vol. 61(6), pages 2753-2804, December.
    7. Brice Corgnet & Roberto Hernán-González & Praveen Kujal & David Porter, 2015. "The Effect of Earned Versus House Money on Price Bubble Formation in Experimental Asset Markets," Review of Finance, European Finance Association, vol. 19(4), pages 1455-1488.
    8. Yeh, Chia-Hsuan & Yang, Chun-Yi, 2010. "Examining the effectiveness of price limits in an artificial stock market," Journal of Economic Dynamics and Control, Elsevier, vol. 34(10), pages 2089-2108, October.
    9. Grinblatt, Mark & Keloharju, Matti & Linnainmaa, Juhani T., 2012. "IQ, trading behavior, and performance," Journal of Financial Economics, Elsevier, vol. 104(2), pages 339-362.
    10. Moore, Henry Ludwell, 1911. "Laws of Wages: An essay in statistical economics," History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, number moore1911.
    11. Thierry Foucault & Ohad Kadan & Eugene Kandel, 2013. "Liquidity Cycles and Make/Take Fees in Electronic Markets," Journal of Finance, American Finance Association, vol. 68(1), pages 299-341, February.
    12. Albert J. Menkveld & Marius A. Zoican, 2017. "Need for Speed? Exchange Latency and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1188-1228.
    13. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    14. Goettler, Ronald L. & Parlour, Christine A. & Rajan, Uday, 2009. "Informed traders and limit order markets," Journal of Financial Economics, Elsevier, vol. 93(1), pages 67-87, July.
    15. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    16. Yeh, Chia-Hsuan, 2008. "The effects of intelligence on price discovery and market efficiency," Journal of Economic Behavior & Organization, Elsevier, vol. 68(3-4), pages 613-625, December.
    17. Lensberg, Terje & Schenk-Hoppé, Klaus Reiner & Ladley, Dan, 2015. "Costs and benefits of financial regulation: Short-selling bans and transaction taxes," Journal of Banking & Finance, Elsevier, vol. 51(C), pages 103-118.
    18. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    19. Chen, Yan & Wang, Xuancheng, 2015. "A hybrid stock trading system using genetic network programming and mean conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 240(3), pages 861-871.
    20. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    21. Terrence Hendershott & Charles M. Jones & Albert J. Menkveld, 2011. "Does Algorithmic Trading Improve Liquidity?," Journal of Finance, American Finance Association, vol. 66(1), pages 1-33, February.
    22. Sandrine Jacob Leal & Mauro Napoletano, 2017. "Market Stability vs. Market Resilience: Regulatory Policies Experiments in an Agent-Based Model with Low- and High-Frequency Trading," Post-Print hal-01768876, HAL.
    23. Albert J. Menkveld, 2016. "The Economics of High-Frequency Trading: Taking Stock," Annual Review of Financial Economics, Annual Reviews, vol. 8(1), pages 1-24, October.
    24. Breaban, Adriana & Noussair, Charles N., 2015. "Trader characteristics and fundamental value trajectories in an asset market experiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 8(C), pages 1-17.
    25. Hagströmer, Björn & Nordén, Lars, 2013. "The diversity of high-frequency traders," Journal of Financial Markets, Elsevier, vol. 16(4), pages 741-770.
    26. Jonathan Brogaard & Björn Hagströmer & Lars Nordén & Ryan Riordan, 2015. "Trading Fast and Slow: Colocation and Liquidity," The Review of Financial Studies, Society for Financial Studies, vol. 28(12), pages 3407-3443.
    27. Noussair, Charles N. & Tucker, Steven & Xu, Yilong, 2016. "Futures markets, cognitive ability, and mispricing in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 130(C), pages 166-179.
    28. Ladley, Daniel & Lensberg, Terje & Palczewski, Jan & Schenk-Hoppé, Klaus Reiner, 2015. "Fragmentation and stability of markets," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 466-481.
    29. Jørgensen, Kjell & Skjeltorp, Johannes & Ødegaard, Bernt Arne, 2018. "Throttling hyperactive robots – Order-to-trade ratios at the Oslo Stock Exchange," Journal of Financial Markets, Elsevier, vol. 37(C), pages 1-16.
    30. Delaney, Laura, 2018. "Investment in high-frequency trading technology: A real options approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 375-385.
    31. Jørgensen, Kjell & Skjeltorp, Johannes Atle & Ødegaard, Bernt Arne, 2014. "Throttling hyperactive robots - Message to trade ratios at the Oslo Stock Exchange," UiS Working Papers in Economics and Finance 2014/3, University of Stavanger.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ladley, Daniel, 2020. "The high frequency trade off between speed and sophistication," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    2. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    3. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    4. Aggarwal, Nidhi & Panchapagesan, Venkatesh & Thomas, Susan, 2023. "When is the order-to-trade ratio fee effective?," Journal of Financial Markets, Elsevier, vol. 62(C).
    5. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    6. Sánchez Serrano Antonio, 2020. "High-Frequency Trading and Systemic Risk: A Structured Review of Findings and Policies," Review of Economics, De Gruyter, vol. 71(3), pages 169-195, December.
    7. Jørgensen, Kjell & Skjeltorp, Johannes & Ødegaard, Bernt Arne, 2018. "Throttling hyperactive robots – Order-to-trade ratios at the Oslo Stock Exchange," Journal of Financial Markets, Elsevier, vol. 37(C), pages 1-16.
    8. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    9. Yang, Haijun & Ge, Hengshun & Luo, Ying, 2020. "The optimal bid-ask price strategies of high-frequency trading and the effect on market liquidity," Research in International Business and Finance, Elsevier, vol. 53(C).
    10. Oliver Linton & Soheil Mahmoodzadeh, 2018. "Implications of High-Frequency Trading for Security Markets," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 237-259, August.
    11. Aït-Sahalia, Yacine & Brunetti, Celso, 2020. "High frequency traders and the price process," Journal of Econometrics, Elsevier, vol. 217(1), pages 20-45.
    12. Kemme, David M. & McInish, Thomas H. & Zhang, Jiang, 2022. "Market fairness and efficiency: Evidence from the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 134(C).
    13. Foucault, Thierry & Moinas, Sophie, 2018. "Is Trading Fast Dangerous?," TSE Working Papers 18-881, Toulouse School of Economics (TSE).
    14. Ramos, Henrique Pinto & Perlin, Marcelo Scherer, 2020. "Does algorithmic trading harm liquidity? Evidence from Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    15. Ekinci, Cumhur & Ersan, Oğuz, 2022. "High-frequency trading and market quality: The case of a “slightly exposed” market," International Review of Financial Analysis, Elsevier, vol. 79(C).
    16. Rzayev, Khaladdin & Ibikunle, Gbenga & Steffen, Tom, 2023. "The market quality implications of speed in cross-platform trading: Evidence from Frankfurt-London microwave," Journal of Financial Markets, Elsevier, vol. 66(C).
    17. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    18. Nidhi Aggarwal & Venkatesh Panchapagesan & Susan Thomas, 2019. "When do regulatory interventions work?," Working Papers id:13040, eSocialSciences.
    19. Bongaerts, Dion & Achter, Mark Van, 2021. "Competition among liquidity providers with access to high-frequency trading technology," Journal of Financial Economics, Elsevier, vol. 140(1), pages 220-249.
    20. Markus Baldauf & Joshua Mollner, 2020. "High‐Frequency Trading and Market Performance," Journal of Finance, American Finance Association, vol. 75(3), pages 1495-1526, June.

    More about this item

    Keywords

    Finance; Genetic Programming; High Frequency Trading; Strategy Design; Regulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lec:leecon:19/02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Abbie Sleath (email available below). General contact details of provider: https://edirc.repec.org/data/deleiuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.