IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.08108.html
   My bibliography  Save this paper

Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization

Author

Listed:
  • Kasper Johansson
  • Thomas Schmelzer
  • Stephen Boyd

Abstract

We propose a new method for finding statistical arbitrages that can contain more assets than just the traditional pair. We formulate the problem as seeking a portfolio with the highest volatility, subject to its price remaining in a band and a leverage limit. This optimization problem is not convex, but can be approximately solved using the convex-concave procedure, a specific sequential convex programming method. We show how the method generalizes to finding moving-band statistical arbitrages, where the price band midpoint varies over time.

Suggested Citation

  • Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "Finding Moving-Band Statistical Arbitrages via Convex-Concave Optimization," Papers 2402.08108, arXiv.org.
  • Handle: RePEc:arx:papers:2402.08108
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.08108
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuji Yamada & James A. Primbs, 2018. "Model Predictive Control for Optimal Pairs Trading Portfolio with Gross Exposure and Transaction Cost Constraints," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(1), pages 1-21, March.
    2. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    3. Carlos Eduardo de Moura & Adrian Pizzinga & Jorge Zubelli, 2016. "A pairs trading strategy based on linear state space models and the Kalman filter," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1559-1573, October.
    4. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    5. Huck, Nicolas, 2009. "Pairs selection and outranking: An application to the S&P 100 index," European Journal of Operational Research, Elsevier, vol. 196(2), pages 819-825, July.
    6. Christopher Krauss, 2017. "Statistical Arbitrage Pairs Trading Strategies: Review And Outlook," Journal of Economic Surveys, Wiley Blackwell, vol. 31(2), pages 513-545, April.
    7. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    8. Tadahiro Nakajima, 2019. "Expectations for Statistical Arbitrage in Energy Futures Markets," JRFM, MDPI, vol. 12(1), pages 1-12, January.
    9. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    10. Christopher Krauss & Johannes Stübinger, 2017. "Non-linear dependence modelling with bivariate copulas: statistical arbitrage pairs trading on the S&P 100," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5352-5369, November.
    11. Geczy, Christopher C. & Musto, David K. & Reed, Adam V., 2002. "Stocks are special too: an analysis of the equity lending market," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 241-269.
    12. Hogan, Steve & Jarrow, Robert & Teo, Melvyn & Warachka, Mitch, 2004. "Testing market efficiency using statistical arbitrage with applications to momentum and value strategies," Journal of Financial Economics, Elsevier, vol. 73(3), pages 525-565, September.
    13. Huck, Nicolas, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," European Journal of Operational Research, Elsevier, vol. 278(1), pages 330-342.
    14. Dongcheol Kim & Byeung‐Joo Lee, 2023. "Shorting costs and profitability of long–short strategies," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 63(1), pages 277-316, March.
    15. João Frois Caldeira & Gulherme Valle Moura, 2013. "Selection of a Portfolio of Pairs Based on Cointegration: A Statistical Arbitrage Strategy," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 49-80.
    16. Bertram, William K., 2010. "Analytic solutions for optimal statistical arbitrage trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2234-2243.
    17. Nicolas Huck, 2019. "Large data sets and machine learning: Applications to statistical arbitrage," Post-Print hal-02143971, HAL.
    18. Huck, Nicolas, 2010. "Pairs trading and outranking: The multi-step-ahead forecasting case," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1702-1716, December.
    19. Marco Avellaneda & Jeong-Hyun Lee, 2010. "Statistical arbitrage in the US equities market," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 761-782.
    20. Johansen, Soren, 2000. "Modelling of cointegration in the vector autoregressive model," Economic Modelling, Elsevier, vol. 17(3), pages 359-373, August.
    21. Johannes Stübinger & Benedikt Mangold & Christopher Krauss, 2018. "Statistical arbitrage with vine copulas," Quantitative Finance, Taylor & Francis Journals, vol. 18(11), pages 1831-1849, November.
    22. James A. Primbs & Yuji Yamada, 2018. "Pairs trading under transaction costs using model predictive control," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 885-895, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasper Johansson & Thomas Schmelzer & Stephen Boyd, 2024. "A Markowitz Approach to Managing a Dynamic Basket of Moving-Band Statistical Arbitrages," Papers 2412.02660, arXiv.org.
    2. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.
    3. Matthew Clegg & Christopher Krauss, 2018. "Pairs trading with partial cointegration," Quantitative Finance, Taylor & Francis Journals, vol. 18(1), pages 121-138, January.
    4. Han, Chulwoo & He, Zhaodong & Toh, Alenson Jun Wei, 2023. "Pairs trading via unsupervised learning," European Journal of Operational Research, Elsevier, vol. 307(2), pages 929-947.
    5. Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023. "Statistical arbitrage: factor investing approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
    6. Krauss, Christopher, 2015. "Statistical arbitrage pairs trading strategies: Review and outlook," FAU Discussion Papers in Economics 09/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
    8. Law, K.F. & Li, W.K. & Yu, Philip L.H., 2018. "A single-stage approach for cointegration-based pairs trading," Finance Research Letters, Elsevier, vol. 26(C), pages 177-184.
    9. Clegg, Matthew & Krauss, Christopher, 2016. "Pairs trading with partial cointegration," FAU Discussion Papers in Economics 05/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    10. Johannes Stübinger & Lucas Schneider, 2019. "Statistical Arbitrage with Mean-Reverting Overnight Price Gaps on High-Frequency Data of the S&P 500," JRFM, MDPI, vol. 12(2), pages 1-19, April.
    11. Fernando Caneo & Werner Kristjanpoller, 2021. "Improving statistical arbitrage investment strategy: Evidence from Latin American stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4424-4440, July.
    12. Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    13. José Cerda & Nicolás Rojas-Morales & Marcel C. Minutolo & Werner Kristjanpoller, 2022. "High Frequency and Dynamic Pairs Trading with Ant Colony Optimization," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1251-1275, March.
    14. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    15. Knoll, Julian & Stübinger, Johannes & Grottke, Michael, 2017. "Exploiting social media with higher-order Factorization Machines: Statistical arbitrage on high-frequency data of the S&P 500," FAU Discussion Papers in Economics 13/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    16. Fischer, Thomas & Krauss, Christopher, 2017. "Deep learning with long short-term memory networks for financial market predictions," FAU Discussion Papers in Economics 11/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    17. Ziping Zhao & Rui Zhou & Zhongju Wang & Daniel P. Palomar, 2018. "Optimal Portfolio Design for Statistical Arbitrage in Finance," Papers 1803.02974, arXiv.org.
    18. Stübinger, Johannes & Endres, Sylvia, 2017. "Pairs trading with a mean-reverting jump-diffusion model on high-frequency data," FAU Discussion Papers in Economics 10/2017, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    19. Rubesam, Alexandre, 2022. "Machine learning portfolios with equal risk contributions: Evidence from the Brazilian market," Emerging Markets Review, Elsevier, vol. 51(PB).
    20. Endres, Sylvia & Stübinger, Johannes, 2018. "A flexible regime switching model with pairs trading application to the S&P 500 high-frequency stock returns," FAU Discussion Papers in Economics 07/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.08108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.